Представление групп — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 52: Строка 52:
 
Задача проверки эквивалентности строк при заданных определяющих соотношениях алгоритмически неразрешима.
 
Задача проверки эквивалентности строк при заданных определяющих соотношениях алгоритмически неразрешима.
 
}}
 
}}
 +
 +
==пример решения задачи==
 +
Пример группы G<tex>=\{a</tex>, <tex>b|aba=b</tex>, <tex>bab=a\}</tex>. докажем что:
 +
1)<tex>a^2=b^2</tex>
 +
2)<tex>a^4=b^4=e</tex>
 +
3)|G|=8
 +
 +
'''доказательство:'''
 +
 +
1) <tex>aba=b \Rightarrow a(bab)=bb</tex> подставляем из второго условия группы и получаем: <tex> aa=bb \Rightarrow a^2=b^2</tex>
 +
 +
2) <tex>aba=b \Rightarrow ba=a^{-1}b</tex>, <tex>bab=a \Rightarrow ab=b^{-1}a</tex>, перемножаем, получаем:<tex>abba=e</tex>, но из доказанного ранее <tex>a^2=b^2 \Rightarrow a^4=e</tex> и <tex>b^4=e</tex>
 +
 +
3)
 +
  
 
[[Категория:Теория групп]]
 
[[Категория:Теория групп]]

Версия 23:07, 1 июля 2010

Эта статья требует доработки!
  1. Необходимо добавить примеры (из тех, что были у нас в качестве задач)

Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).

Свободная группа

Рассмотрим конечный алфавит [math] \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} [/math].
Рассмотрим множество строк над алфавитом [math] \Sigma \cup \Sigma^{-1} ; \; S = S_1 S_2 \dots S_k , \; символ a \in \Sigma \cup \Sigma^{-1} [/math].


Определение:
[math]S[/math] и [math]S'[/math] называются эквивалентными, если они могут быть превращены друг в друга вставками и удалениями из произвольных мест [math]aa^{-1}[/math] и [math]a^{-1}a[/math].


Таким образом, [math] \Sigma \cup \Sigma^{-1} [/math] с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).


Определение:
[math] \Sigma \cup \Sigma^{-1} [/math] называется свободной группой, порожденной алфавитом [math]\Sigma[/math].


Рассмотрим строку. Проредуцируем её (будем последовательно удалять [math]aa^{-1}[/math] из нее, пока в строке не будет таких последовательностей элементов). Поставим вопрос: правда ли, что вне зависимости от последовательности удалений мы будем получать одну и ту же конечную редуцированную строку?

Теорема (О редуцированной строке):
У одной строки существует лишь одна редуцированная строка
Доказательство:
[math]\triangleright[/math]

Пусть существуют 2 проредуцированные строки [math]\omega_1[/math] и [math]\omega_2[/math], заданные одной строкой. Тогда существуют цепочки вставок и удалений
[math]\omega_1 \rightarrow S_1 \rightarrow S_2 \dots \rightarrow S_k \rightarrow \omega_2 [/math], где [math]\rightarrow[/math] − операция вставки или удаления [math]aa^{-1}[/math]. (Существование цепочки обеспечено тем, что эти строки образованы одним элементом).

Среди цепочек рассмотрим такую, у которой минимально [math]\sum |S_i|[/math] и пусть [math]S_i[/math] − строка наибольшей длины.
Рассмотрим [math] S_{i - 1} \rightarrow S_i \rightarrow S_{i + 1} [/math], причем мы знаем, что переходы от [math]i[/math] к [math]i - 1[/math] и [math]i + 1[/math] обеспечены за счет удаления (из-за того, что длина [math]S_i[/math] максимальна). Эти переходы могут быть обеспечены за счет:

  1. Двух непересекающихся пар. Тогда пусть [math] S_{i - 1} = L_1 L_2 b b^{-1} L_3, \quad S_i = L_1 a a^{-1} L_2 b b^{-1} L_3, \quad S_{i + 1} = L_1 a a^{-1} L_2 L_3 [/math], где [math]L_1, L_2, L_3[/math] − некие строки.
    Таким образом, у нас есть часть цепочки [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заменим эту часть цепочки на [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 L_2 L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заметим, что крайние значения части цепочки от этого не изменятся, но [math]\sum |S_i|[/math] уменьшится, а это противоречит нашему предположению о минимальности суммы.
  2. Пар, пересекающихся по двум позициям. Тогда [math]S_{i-1} = S_{i+1}[/math], и можно избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], и от этого сумма длин слов также уменьшится.
  3. Пар, пересекающихся по одной позиции. Имеем [math]L_1 a L_2 \rightarrow L_1 a a^{-1} a L_2 \rightarrow L_1 a L_2[/math], и в этом случае мы также можем избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], что также уменьшит итоговую сумму длин строк.
Таким образом, мы пришли к противоречию во всех случаях, а это значит, что мы доказали теорему.
[math]\triangleleft[/math]

Задание группы определяющими соотношениями

Пусть также имеем алфавит [math]\Sigma = \{ a_1, \dots a_n \} [/math] и набор пар строк [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math]. Разрешается где угодно менять [math]\omega_i[/math] на [math]S_i[/math] и наоборот.


Определение:
Выражения [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math] называются определяющими соотношениями.


Утверждение (без доказательства):
Задача проверки эквивалентности строк при заданных определяющих соотношениях алгоритмически неразрешима.

пример решения задачи

Пример группы G[math]=\{a[/math], [math]b|aba=b[/math], [math]bab=a\}[/math]. докажем что: 1)[math]a^2=b^2[/math] 2)[math]a^4=b^4=e[/math] 3)|G|=8

доказательство:

1) [math]aba=b \Rightarrow a(bab)=bb[/math] подставляем из второго условия группы и получаем: [math] aa=bb \Rightarrow a^2=b^2[/math]

2) [math]aba=b \Rightarrow ba=a^{-1}b[/math], [math]bab=a \Rightarrow ab=b^{-1}a[/math], перемножаем, получаем:[math]abba=e[/math], но из доказанного ранее [math]a^2=b^2 \Rightarrow a^4=e[/math] и [math]b^4=e[/math]

3)