Интерполяционный поиск — различия между версиями
Gromak (обсуждение | вклад) |
Gromak (обсуждение | вклад) (→Время работы) |
||
| Строка 28: | Строка 28: | ||
== Время работы == | == Время работы == | ||
| − | Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с <tex> n </tex> до <tex> \sqrt n </tex>. То есть, после <tex>k</tex>-ого шага количество проверяемых элементов уменьшается до <tex dpi = 170>n^{\frac{1}{2^k}}</tex>. Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда <tex dpi = 150>\frac{1}{2^k} = log_{n}2 = \frac{1}{log_{2}n} </tex>. Из этого вытекает, что количество шагов, а значит, и время работы составляет <tex>O(\log \log n)</tex>. | + | Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с <tex> n </tex> до <tex> \sqrt n </tex>. То есть, после <tex>k</tex>-ого шага количество проверяемых элементов уменьшается до <tex dpi = 170>n^{\frac{1}{2^k}}</tex>. Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда <tex dpi = 150>\frac{1}{2^k} = \log_{n}2 = \frac{1}{\log_{2}n} </tex>. Из этого вытекает, что количество шагов, а значит, и время работы составляет <tex>O(\log \log n)</tex>. |
При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до <tex> O(n) </tex>. | При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до <tex> O(n) </tex>. | ||
| − | Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями <tex>\log \log n</tex> и <tex>\log n</tex> становится значительной только при очень больших <tex> | + | Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями <tex>\log \log n</tex> и <tex>\log n</tex> становится значительной только при очень больших <tex>n</tex>. На практике при поиске в больших файлах оказывается выгодным на ранних стадиях применять интерполяционный поиск, а затем, когда диапазон существенно уменьшится, переходить к двоичному. |
== Литература == | == Литература == | ||
Версия 02:17, 7 июня 2012
Содержание
Идея
Рассмотрим задачу: найти слово в словаре. Если оно начинается на букву "А", то никто не будет искать его в середине, а откроет словарь ближе к началу. В чём разница между алгоритмом человека и другими? Отличие заключается в том, что алгоритмы вроде двоичного поиска не делают различий между "немного больше" и "существенно больше".
Алгоритм
Пусть — отсортированный массив чисел из чисел, — значение, которое нужно найти. Поиск происходит подобно двоичному поиску, но вместо деления области поиска на две примерно равные части, интерполирующий поиск производит оценку новой области поиска по расстоянию между ключом и текущим значением элемента. Если известно, что лежит между и , то следующая проверка выполняется примерно на расстоянии от .
Псевдокод
interpolationSearch(n, x):
l = 0; // левая граница поиска (будем считать, что элементы массива нумеруются с нуля)
r = n - 1; // правая граница поиска
while a[l] <= x && x <= a[r]
m = l + (x - a[l]) / (a[r] - a[l]) * (r - l); // элемент, с которым будем проводить сравнение
if a[m] == x
result = m;
if a[m] < x
l = m + 1;
else
r = m - 1;
if a[l] == x
result = l;
else
result = -1; // not found
Время работы
Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с до . То есть, после -ого шага количество проверяемых элементов уменьшается до . Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда . Из этого вытекает, что количество шагов, а значит, и время работы составляет .
При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до .
Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями и становится значительной только при очень больших . На практике при поиске в больших файлах оказывается выгодным на ранних стадиях применять интерполяционный поиск, а затем, когда диапазон существенно уменьшится, переходить к двоичному.
Литература
Д.Э. Кнут: Искусство программирования (том 3)
Wikipedia: Interpolation search
Wikipedia: Интерполирующий поиск