Цепные дроби для sqrtd и квадратичных иррациональностей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Рассмотрим число <tex>\alpha=[\sqrt{D}]+\sqrt{D}</tex>. Заметим, что оно приведённое <tex>\alpha>1, [\sqrt{D}]-\sqrt{D}\in(-1;…»)
 
Строка 4: Строка 4:
 
* <tex>\sqrt{D}</tex> представимо в виде цепной дроби из <tex>a_0</tex> и периода.
 
* <tex>\sqrt{D}</tex> представимо в виде цепной дроби из <tex>a_0</tex> и периода.
 
* <tex>\sqrt{D}=[\sqrt{D}]+\sqrt{D}-a_0</tex> значит <tex>\sqrt{D}=\langle a_0, \overline{a_1,\cdots, a_n, 2a_0} \rangle</tex>.
 
* <tex>\sqrt{D}=[\sqrt{D}]+\sqrt{D}-a_0</tex> значит <tex>\sqrt{D}=\langle a_0, \overline{a_1,\cdots, a_n, 2a_0} \rangle</tex>.
 +
 +
{{Теорема
 +
|author=Лагранж
 +
|statement=
 +
Число<tex>\alpha</tex> представимо в виде периодической цепной дроби тогда и только тогда, когда <tex>\alpha</tex> квадратичная иррациональность.
 +
|proof=
 +
<tex>\Rightarrow</tex>
 +
 +
<tex>\alpha=\langle a_0,a_1,\cdots,\overline{a_k,\cdots a_n}\rangle</tex>, тогда введём <tex>\alpha_k=\langle \overline{a_k,\cdots, a_n}\rangle</tex>. Тогда <tex>\alpha_k=\langle a_k,\cdots, a_n, \overline{\alpha_k} \rangle</tex>. <tex>\alpha_k=\frac{P_n'\alpha_k+P_{n-1}'}{Q_n'\alpha_k+Q_{n-1}'}\Rightarrow Q_n'\alpha_k^2+(P_n'+Q_{n-1}')alpha_k+P_{n-1}'</tex>
 +
}}

Версия 19:34, 2 июля 2010

Рассмотрим число [math]\alpha=[\sqrt{D}]+\sqrt{D}[/math]. Заметим, что оно приведённое [math]\alpha\gt 1, [\sqrt{D}]-\sqrt{D}\in(-1;0)[/math]. Тогда сразу следуют следующие утверждения

  • число [math][\sqrt{D}]+\sqrt{D}[/math] представимо в виде чисто периодической цепной дроби.
  • [math]\sqrt{D}[/math] представимо в виде цепной дроби из [math]a_0[/math] и периода.
  • [math]\sqrt{D}=[\sqrt{D}]+\sqrt{D}-a_0[/math] значит [math]\sqrt{D}=\langle a_0, \overline{a_1,\cdots, a_n, 2a_0} \rangle[/math].
Теорема (Лагранж):
Число[math]\alpha[/math] представимо в виде периодической цепной дроби тогда и только тогда, когда [math]\alpha[/math] квадратичная иррациональность.
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math]

[math]\alpha=\langle a_0,a_1,\cdots,\overline{a_k,\cdots a_n}\rangle[/math], тогда введём [math]\alpha_k=\langle \overline{a_k,\cdots, a_n}\rangle[/math]. Тогда [math]\alpha_k=\langle a_k,\cdots, a_n, \overline{\alpha_k} \rangle[/math]. [math]\alpha_k=\frac{P_n'\alpha_k+P_{n-1}'}{Q_n'\alpha_k+Q_{n-1}'}\Rightarrow Q_n'\alpha_k^2+(P_n'+Q_{n-1}')alpha_k+P_{n-1}'[/math]
[math]\triangleleft[/math]