Цепные дроби для sqrtd и квадратичных иррациональностей — различия между версиями
Строка 10: | Строка 10: | ||
Число<tex>\alpha</tex> представимо в виде периодической цепной дроби тогда и только тогда, когда <tex>\alpha</tex> квадратичная иррациональность. | Число<tex>\alpha</tex> представимо в виде периодической цепной дроби тогда и только тогда, когда <tex>\alpha</tex> квадратичная иррациональность. | ||
|proof= | |proof= | ||
− | <tex>\Rightarrow</tex> | + | <tex>\Rightarrow</tex>. |
<tex>\alpha=\langle a_0,a_1,\cdots,\overline{a_k,\cdots a_n}\rangle</tex>, тогда введём <tex>\alpha_k=\langle \overline{a_k,\cdots, a_n}\rangle</tex>. Тогда <tex>\alpha_k=\langle a_k,\cdots, a_n, \overline{\alpha_k} \rangle</tex>. <tex>\alpha_k=\frac{P_n'\alpha_k+P_{n-1}'}{Q_n'\alpha_k+Q_{n-1}'}\Rightarrow Q_n'\alpha_k^2+(P_n'+Q_{n-1}')\alpha_k+P_{n-1}'=0</tex> | <tex>\alpha=\langle a_0,a_1,\cdots,\overline{a_k,\cdots a_n}\rangle</tex>, тогда введём <tex>\alpha_k=\langle \overline{a_k,\cdots, a_n}\rangle</tex>. Тогда <tex>\alpha_k=\langle a_k,\cdots, a_n, \overline{\alpha_k} \rangle</tex>. <tex>\alpha_k=\frac{P_n'\alpha_k+P_{n-1}'}{Q_n'\alpha_k+Q_{n-1}'}\Rightarrow Q_n'\alpha_k^2+(P_n'+Q_{n-1}')\alpha_k+P_{n-1}'=0</tex> | ||
}} | }} |
Версия 19:35, 2 июля 2010
Рассмотрим число
. Заметим, что оно приведённое . Тогда сразу следуют следующие утверждения- число представимо в виде чисто периодической цепной дроби.
- представимо в виде цепной дроби из и периода.
- значит .
Теорема (Лагранж): |
Число представимо в виде периодической цепной дроби тогда и только тогда, когда квадратичная иррациональность. |
Доказательство: |
. , тогда введём . Тогда . |