Сортировка Хана — различия между версиями
Da1s60 (обсуждение | вклад) |
Da1s60 (обсуждение | вклад) |
||
Строка 39: | Строка 39: | ||
}} | }} | ||
− | Взяв <tex>s = 2logn</tex> мы получим хэш функцию <tex>h_{a}</tex> которая захэширует <tex>n</tex> чисел из <tex>U</tex> в таблицу размера <tex>O(n^2)</tex> без коллизий. Очевидно, что <tex>h_{a}(x)</tex> может быть посчитана для любого <tex>x</tex> за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить <tex>h_{a}</tex> ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только mod<tex>2^b</tex> и div<tex>2^{b - s}</tex>. | + | Взяв <tex>s = 2logn</tex> мы получим хэш функцию <tex>h_{a}</tex> которая захэширует <tex>n</tex> чисел из <tex>U</tex> в таблицу размера <tex>O(n^2)</tex> без коллизий. Очевидно, что <tex>h_{a}(x)</tex> может быть посчитана для любого <tex>x</tex> за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить <tex>h_{a}</tex> ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod <tex>2^b</tex>) и (div <tex>2^{b - s}</tex>). |
+ | |||
+ | Такая хэш функция может быть найдена за <tex>О(n^3)</tex>. | ||
+ | |||
+ | Следует отметить, что несмотря на размер таблицы <tex>O(n^2)</tex>, потребность в памяти не превышает <tex>O(n)</tex> потому, что хэштрование используется только для уменьшения количества бит в числе. |
Версия 23:24, 10 июня 2012
Сортировка Хана (Yijie Han) — сложный алгоритм сортировки целых чисел со сложностью
, где — количество элементов для сортировки.Содержание
Алгоритм
Алгоритм построен на основе экспоненциального поискового дерева (далее - Э.П.дерево) Андерсона (Andersson's exponential search tree). Сортировка происходит за счет вставки целых чисел в Э.П.дерево.
Andersson's exponential search tree
Э.П.дерево с
листьями состоит из корня и (0< <1) Э.П.поддеревьев, в каждом из которых листьев; каждое Э.П.поддерево является сыном корня . В этом дереве уровней. При нарушении баланса дерева, необходимо балансирование, которое требует времени при вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не по одиночке, как изначально предлагает Андерссон.Необходимая информация
Определение: |
Контейнер - объект определенного типа, содержащий обрабатываемый элемент. Например __int32, __int64, и т.д. |
Определение: |
Алгоритм сортирующий | целых чисел из множества {0, 1, ..., - 1} называется консервативным, если длина контейнера (число бит в контейнере), является Если длина больше, то алгоритм не консервативный.
Определение: |
Для множества min( Набор ) = min( : принадлежит ) max( ) = max( : принадлежит ) < если max( ) <= min( ) | определим
Уменьшение числа бит в числах
Один из способов ускорить сортировку - уменьшить число бит в числе. Один из способов уменьшить число бит в числе - использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий
памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до . Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование для всех чисел хранимых в контейнере. Для этого используется хэш функция для хэширования чисел в таблицу размера за константное время, без коллизий. Для этого используется хэш модифицированная функция авторства: Dierzfelbinger и Raman.Алгоритм: Пусть целое число
>= 0 и пусть = {0, ..., - 1}. Класс хэш функций из в {0, ..., - 1} определен как = { | 0 < < , и нечетно} и для всех из : mod divДанный алгоритм базируется на следующей лемме:
Лемма: |
Даны целые числа >= >= 0 и является подмножеством {0, ..., - 1}, содержащим элементов, и >= С . Функция принадлежащая может быть выбрана за время так, что количество коллизий |
Взяв
мы получим хэш функцию которая захэширует чисел из в таблицу размера без коллизий. Очевидно, что может быть посчитана для любого за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod ) и (div ).Такая хэш функция может быть найдена за
.Следует отметить, что несмотря на размер таблицы
, потребность в памяти не превышает потому, что хэштрование используется только для уменьшения количества бит в числе.