Сортировка Хана — различия между версиями
Da1s60 (обсуждение | вклад) |
Da1s60 (обсуждение | вклад) |
||
Строка 50: | Строка 50: | ||
Предположим, что <tex>n</tex> чисел должны быть сортированы, и в каждом <tex>logm</tex> бит. Мы рассматриваем, что в каждом числе есть <tex>h</tex> сегментов, в каждом из которых <tex>log(m/h)</tex> бит. Теперь мы применяем хэширование ко всем сегментам и получаем <tex>2hlogn</tex> бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке <tex>n</tex> чисел по <tex>m</tex> бит в каждом стала задачей по сортировке <tex>n</tex> чисел по <tex>log(m/h)</tex> бит в каждом. | Предположим, что <tex>n</tex> чисел должны быть сортированы, и в каждом <tex>logm</tex> бит. Мы рассматриваем, что в каждом числе есть <tex>h</tex> сегментов, в каждом из которых <tex>log(m/h)</tex> бит. Теперь мы применяем хэширование ко всем сегментам и получаем <tex>2hlogn</tex> бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке <tex>n</tex> чисел по <tex>m</tex> бит в каждом стала задачей по сортировке <tex>n</tex> чисел по <tex>log(m/h)</tex> бит в каждом. | ||
− | Так же, рассмотрим проблему последующего разделения. Пусть <tex>a_{1}</tex>, <tex>a_{2}</tex>, ..., <tex>a_{p}</tex> {{---}} <tex>p</tex> чисел и <tex>S</tex> {{---}} множество числе. | + | Так же, рассмотрим проблему последующего разделения. Пусть <tex>a_{1}</tex>, <tex>a_{2}</tex>, ..., <tex>a_{p}</tex> {{---}} <tex>p</tex> чисел и <tex>S</tex> {{---}} множество чисeл. Мы хотим разделить <tex>S</tex> в <tex>p + 1</tex> наборов таких, что: <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < {<tex>a_{2}</tex>} < ... < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Т.к. мы используем signature sorting, до того как делать вышеописанное разделение, мы поделим биты в <tex>a_{i}</tex> на <tex>h</tex> сегментов и возьмем некоторые из них. Мы так же поделим биты для каждого числа из <tex>S</tex> и оставим только один в каждом числе. По существу для каждого <tex>a_{i}</tex> мы возьмем все <tex>h</tex> сегментов. Если соответствующие сегменты <tex>a_{i}</tex> и <tex>a_{j}</tex> совпадают, то нам понадобится только один. Сегменты, которые мы берем для числа в <tex>S</tex>, {{---}} сегмент, который "вылетает" из <tex>a_{i}</tex>. Таким образом мы преобразуем начальную задачу о разделении в несколько задач на разделение с числами в <tex>log(m/h)</tex> бит. |
Версия 00:03, 11 июня 2012
Сортировка Хана (Yijie Han) — сложный алгоритм сортировки целых чисел со сложностью
, где — количество элементов для сортировки.Содержание
Алгоритм
Алгоритм построен на основе экспоненциального поискового дерева (далее — Э.П.дерево) Андерсона (Andersson's exponential search tree). Сортировка происходит за счет вставки целых чисел в Э.П.дерево.
Andersson's exponential search tree
Э.П.дерево с
листьями состоит из корня и (0< <1) Э.П.поддеревьев, в каждом из которых листьев; каждое Э.П.поддерево является сыном корня . В этом дереве уровней. При нарушении баланса дерева, необходимо балансирование, которое требует времени при вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не по одиночке, как изначально предлагает Андерссон.Необходимая информация
Определение: |
Контейнер — объект определенного типа, содержащий обрабатываемый элемент. Например __int32, __int64, и т.д. |
Определение: |
Алгоритм сортирующий | целых чисел из множества {0, 1, ..., - 1} называется консервативным, если длина контейнера (число бит в контейнере), является Если длина больше, то алгоритм не консервативный.
Определение: |
Для множества min( Набор ) = min( : принадлежит ) max( ) = max( : принадлежит ) < если max( ) <= min( ) | определим
Уменьшение числа бит в числах
Один из способов ускорить сортировку — уменьшить число бит в числе. Один из способов уменьшить число бит в числе — использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий
памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до . Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование для всех чисел хранимых в контейнере. Для этого используется хэш функция для хэширования чисел в таблицу размера за константное время, без коллизий. Для этого используется хэш модифицированная функция авторства: Dierzfelbinger и Raman.Алгоритм: Пусть целое число
>= 0 и пусть = {0, ..., - 1}. Класс хэш функций из в {0, ..., - 1} определен как = { | 0 < < , и нечетно} и для всех из : mod divДанный алгоритм базируется на следующей лемме:
Лемма: |
Даны целые числа >= >= 0 и является подмножеством {0, ..., - 1}, содержащим элементов, и >= С . Функция принадлежащая может быть выбрана за время так, что количество коллизий |
Взяв
мы получим хэш функцию которая захэширует чисел из в таблицу размера без коллизий. Очевидно, что может быть посчитана для любого за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod ) и (div ).Такая хэш функция может быть найдена за
.Следует отметить, что несмотря на размер таблицы
, потребность в памяти не превышает потому, что хэширование используется только для уменьшения количества бит в числе.Signature sorting
В данной сортировке используется следующий алгоритм:
Предположим, что
чисел должны быть сортированы, и в каждом бит. Мы рассматриваем, что в каждом числе есть сегментов, в каждом из которых бит. Теперь мы применяем хэширование ко всем сегментам и получаем бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке чисел по бит в каждом стала задачей по сортировке чисел по бит в каждом.Так же, рассмотрим проблему последующего разделения. Пусть
, , ..., — чисел и — множество чисeл. Мы хотим разделить в наборов таких, что: < { } < < { } < ... < { } < . Т.к. мы используем signature sorting, до того как делать вышеописанное разделение, мы поделим биты в на сегментов и возьмем некоторые из них. Мы так же поделим биты для каждого числа из и оставим только один в каждом числе. По существу для каждого мы возьмем все сегментов. Если соответствующие сегменты и совпадают, то нам понадобится только один. Сегменты, которые мы берем для числа в , — сегмент, который "вылетает" из . Таким образом мы преобразуем начальную задачу о разделении в несколько задач на разделение с числами в бит.