Двоичная куча — различия между версиями
(→Определение) |
(→Определение) |
||
Строка 12: | Строка 12: | ||
[[Файл:Heap.png|thumb|325px|Пример кучи для максимума]] | [[Файл:Heap.png|thumb|325px|Пример кучи для максимума]] | ||
− | Удобнее всего двоичную кучу хранить в виде массива <tex>A[ | + | Удобнее всего двоичную кучу хранить в виде массива <tex>A[0..n-1]</tex>, у которого нулевой элемент, <tex>A[0]</tex> — элемент в корне, а потомками элемента <tex>A[i]</tex> являются <tex>A[2i+1]</tex> и <tex>A[2i+2]</tex>. Высота кучи определяется как высота двоичного дерева. То есть она равна количеству рёбер в самом длинном простом пути, соединяющем корень кучи с одним из её листьев. Высота кучи есть <tex>O(\log{N})</tex>, где <tex>N</tex> — количество узлов дерева. |
Чаще всего используют кучи для минимума (когда предок не больше детей) и для максимума (когда предок не меньше детей). | Чаще всего используют кучи для минимума (когда предок не больше детей) и для максимума (когда предок не меньше детей). |
Версия 11:50, 11 июня 2012
Содержание
Определение
Определение: |
Двоичная куча или пирамида — такое двоичное подвешенное дерево, для которого выполнены следующие три условия:
|
Удобнее всего двоичную кучу хранить в виде массива
, у которого нулевой элемент, — элемент в корне, а потомками элемента являются и . Высота кучи определяется как высота двоичного дерева. То есть она равна количеству рёбер в самом длинном простом пути, соединяющем корень кучи с одним из её листьев. Высота кучи есть , где — количество узлов дерева.Чаще всего используют кучи для минимума (когда предок не больше детей) и для максимума (когда предок не меньше детей).
Двоичные кучи используют, например, для того, чтобы извлекать минимум из набора чисел за
. Двоичные кучи — частный случай приоритетных очередей. Приоритетная очередь — это структура данных, которая позволяет хранить пары (значение и ключ) и поддерживает операции добавления пары, поиска пары с минимальным ключом и ее извлечение.Базовые процедуры
Восстановление свойств кучи
Если в куче изменяется один из элементов, то она может перестать удовлетворять свойству упорядоченности. Для восстановления этого свойства служат процедуры sift_down (просеивание вниз) и sift_up (просеивание вверх). Если значение измененного элемента увеличивается, то свойства кучи восстанавливаются функцией sift_down(i). Работа процедуры: если
-й элемент меньше, чем его сыновья, всё поддерево уже является кучей, и делать ничего не надо. В противном случае меняем местами -й элемент с наименьшим из его сыновей, после чего выполняем sift_down() для этого сына. Процедура выполняется за время .
sift_down(i) // heap_size - количество элементов в куче if (2 * i <= A.heap_size) left = A[2 * i] // левый сын else left = inf if (2 * i + 1 <= A.heap_size) right = A[2 * i + 1] // правый сын else right = inf if (left == right == inf) return if (right <= left && right < A[i]) swap(A[2 * i + 1], A[i]) sift_down(2 * i + 1) if (left < A[i]) swap(A[2 * i], A[i]) sift_down(2 * i)
Если значение измененного элемента уменьшается, то свойства кучи восстанавливаются функцией sift_up(i).
Работа процедуры: если элемент больше своего отца, условие 1 соблюдено для всего дерева, и больше ничего делать не нужно. Иначе, мы меняем местами его с отцом. После чего выполняем sift_up для этого отца. Иными словами, слишком большой элемент всплывает наверх. Процедура выполняется за время
.
sift_up(i) if (i == 1) return if (A[i] < A[i / 2]) swap(A[i], A[i / 2]); sift_up(i / 2)
Извлечение минимального элемента
Выполняет извлечение минимального элемента из кучи за время
. Извлечение выполняется в четыре этапа:- Значение корневого элемента (он и является минимальным) сохраняется для последующего возврата.
- Последний элемент копируется в корень, после чего удаляется из кучи.
- Вызывается sift_down(i) для корня.
- Сохранённый элемент возвращается.
extract_min() min = A[1] A[1] = A[A.heap_size] A.heap_size = A.heap_size - 1 sift_down(1) return min
Добавление нового элемента
Выполняет добавление элемента в кучу за время
. Добавление произвольного элемента в конец кучи, и восстановление свойства упорядоченности с помощью процедуры sift_up.
insert(key) A.heap_size = A.heap_size + 1 A[A.heap_size] = key sift_up(A.heap_size)