Разрешение коллизий — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Стратегии поиска)
Строка 37: Строка 37:
 
Для защиты от кластеризации используется [[Двойное хеширование|двойное хеширование]] и [[Хеширование кукушки|хеширование кукушки]].
 
Для защиты от кластеризации используется [[Двойное хеширование|двойное хеширование]] и [[Хеширование кукушки|хеширование кукушки]].
  
==Литература==
+
==Двойное хеширование==
* [http://ru.wikipedia.org/wiki/Хеширование Хеширование {{---}} Википедия]
+
'''Двойное хеширование''' {{---}} метод борьбы с коллизиями, возникающими при [[Открытое_и_закрытое_хеширование#Закрытое хеширование|закрытом хешировании]], основанный на использовании двух хеш-функций для построения различных последовательностей исследования хеш-таблицы.
* [http://ru.wikipedia.org/wiki/Хеш-таблица Хеш-таблица {{---}} Википедия]
+
 
* Т. Кормен, Ч. Лейзерсон, Р. Ривест, Алгоритмы: построение и анализ, 2-е издание, Издательский дом "Вильямс", 2005 год, стр. 282
+
===Принцип двойного хеширования===
 +
При двойном хешировании используются две независимые хеш-функции <tex> h_1(k) </tex> и <tex> h_2(k) </tex>. Пусть <tex> k </tex> {{---}} это наш ключ, <tex> m </tex> {{---}} размер нашей таблицы, <tex>n \mod m </tex> {{---}} остаток от деления <tex> n </tex> на <tex> m </tex>, тогда сначала исследуется ячейка с адресом <tex> h_1(k) </tex>, если она уже занята, то рассматривается <tex> (h_1(k) +  h_2(k)) \mod m </tex>, затем <tex> (h_1(k) +  2 \cdot h_2(k)) \mod m </tex> и так далее. В общем случае идёт проверка последовательности ячеек <tex> (h_1(k) +  i \cdot h_2(k)) \mod m </tex> где <tex>  i = (0, 1, \; ... \;,  m - 1) </tex>
 +
 
 +
Таким образом, операции вставки, удаления и поиска в лучшем случае выполняются за <tex>O(1)</tex>, в худшем {{---}} за <tex>O(m)</tex>, что не отличается от обычного [[Открытое_и_закрытое_хеширование#Линейное разрешение коллизий|линейного разрешения коллизий]].
 +
Однако в среднем, при грамотном выборе хеш-функций, двойное хеширование будет выдавать лучшие результаты, за счёт того, что вероятность совпадения значений сразу двух независимых хеш-функций ниже, чем одной.
 +
 
 +
<center>
 +
<tex>\forall x \neq y \; \exists h_1,h_2 : p(h_1(x)=h_1(y))> p((h_1(x)=h_1(y)) \land (h_2(x)=h_2(y)))</tex>
 +
</center>
 +
 
 +
===Выбор хеш-функций===
 +
<tex> h_1 </tex> может быть обычной хеш-функцией. Однако чтобы последовательность исследования могла охватить всю таблицу, <tex> h_2 </tex> должна возвращать значения:
 +
*не равные <tex> 0 </tex>
 +
*независимые  от <tex> h_1 </tex>
 +
*взаимно простые с величиной хеш-таблицы
 +
 
 +
Есть два удобных способа это сделать. Первый состоит в том, что в качестве размера таблицы используется простое число, а <tex> h_2 </tex> возвращает натуральные числа, меньшие <tex> m </tex>. Второй {{---}} размер таблицы является степенью двойки, а <tex> h_2 </tex> возвращает нечетные значения.
 +
 
 +
Например, если размер таблицы равен <tex> m </tex>, то в качестве <tex> h_2 </tex> можно использовать функцию вида <tex> h_2(k) = k \mod (m-1) + 1 </tex>
 +
 
 +
[[Файл: Вставка при двойном хэшировании.svg.jpeg|thumb|right|Вставка при двойном хешировании]]
 +
 
 +
===Пример===
 +
 
 +
Показана хеш-таблица размером 13 ячеек, в которой используются вспомогательные функции:
 +
 
 +
<center>
 +
<tex> h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod 13 </tex>
 +
</center>
 +
 
 +
<center>
 +
<tex> h_1(k) = k \mod 13 </tex>
 +
</center>
 +
 
 +
<center>
 +
<tex> h_2(k) = 1 + k \mod 11 </tex>
 +
</center>
 +
 
 +
Мы хотим вставить ключ 14. Изначально <tex> i = 0 </tex>. Тогда <tex> h(14,0) = (h_1(14) + 0\cdot h_2(14)) \mod 13 = 1 </tex>. Но ячейка с индексом 1 занята, поэтому увеличиваем <tex> i </tex> на 1 и пересчитываем значение хеш-функции. Делаем так, пока не дойдем до пустой ячейки. При <tex> i = 2 </tex> получаем <tex> h(14,2) = (h_1(14) + 2\cdot h_2(14)) \mod 13 = 9 </tex>. Ячейка с номером 9 свободна, значит записываем туда наш ключ.
 +
 
 +
Таким образом, основная особенность двойного хеширования состоит в том, что при различных <tex> k </tex> пара <tex> (h_1(k),h_2(k)) </tex> дает различные последовательности ячеек для исследования.
 +
 
 +
===Простая реализация===
 +
Пусть у нас есть некоторый объект <tex> item </tex>, в котором определено поле <tex> key </tex>, от которого можно вычислить хеш-функции <tex> h_1(key)</tex> и <tex> h_2(key) </tex>
 +
 
 +
Так же у нас есть таблица <tex> table </tex> величиной <tex> m </tex>, состоящая из объектов типа <tex> item </tex>.
 +
 
 +
'''Вставка'''
 +
<pre>add(item)
 +
  x = h1(item.key)
 +
  y = h2(item.key)
 +
  for (i = 0; i < m; i++)   
 +
      if table[x] == null
 +
        table[x] = item
 +
        return     
 +
      x = (x + y) mod m 
 +
  table.resize() //ошибка, требуется увеличить размер таблицы</pre>
 +
 
 +
'''Поиск'''
 +
<pre>search(key)
 +
  x = h1(key)
 +
  y = h2(key)
 +
  for (i = 0; i < m; i++)
 +
      if table[x] != null
 +
        if table[x].key == key
 +
            return table[x]
 +
      else
 +
        return null
 +
      x = (x + y) mod m 
 +
  return null</pre>
 +
 
 +
===Реализация с удалением===
 +
Что бы наша хеш-таблица поддерживала удаление, требуется добавить массив <tex>deleted</tex> типов <tex>bool</tex>, равный по величине массиву <tex>table</tex>. Теперь при удалении мы просто будем помечать наш объект ''как удалённый'', а при добавлении как ''не удалённый'' и замещать новым добавляемым объектом. При поиске, помимо равенства ключей, мы смотрим, удалён ли элемент, если да, то идём дальше.
 +
 
 +
'''Вставка'''
 +
<pre>add(item)
 +
  x = h1(item.key)
 +
  y = h2(item.key)
 +
  for (i = 0; i < m; i++) 
 +
      if table[x] == null || deleted[x]
 +
        table[x] = item
 +
        deleted[x] = false
 +
        return     
 +
      x = (x + y) mod m 
 +
  table.resize() //ошибка, требуется увеличить размер таблицы</pre>
 +
 
 +
'''Поиск'''
 +
<pre>search(key)
 +
  x = h1(key)
 +
  y = h2(key)
 +
  for (i = 0; i < m; i++)
 +
      if table[x] != null
 +
        if table[x].key == key && !deleted[x]
 +
            return table[x]
 +
      else
 +
        return null
 +
      x = (x + y) mod m 
 +
  return null</pre>
 +
 
 +
'''Удаление'''
 +
<pre>remove(key)
 +
  x = h1(key)
 +
  y = h2(key)
 +
  for (i = 0; i < m; i++)
 +
      if table[x] != null
 +
        if table[x].key == key
 +
            deleted[x] = true
 +
      else
 +
        return
 +
      x = (x + y) mod m</pre>
 +
 
 +
==См. также==
 +
* [[Хеширование]]
 +
* [[Хеширование_кукушки|Хеширование кукушки]]
 +
 
 +
== Литература ==
 +
* Бакнелл Дж. М. '''Фундаментальные алгоритмы и структуры данных в Delphi''', ''2003''
 +
* Кнут Д. Э. '''Искусство программирования, том 3. Сортировка и поиск''', ''2-е издание, 2000''
 +
* Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. '''Алгоритмы. Построение и анализ''', ''2010''
 +
* Седжвик Р. '''Фундаментальные алгоритмы на C. Части 1-4. Анализ. Структуры данных. Сортировка. Поиск''', ''2003''
 +
 
 +
==Ссылки==
 +
* [http://en.wikipedia.org/wiki/Double_hashing Wikipedia {{---}} Double_hashing]
 +
* [http://rain.ifmo.ru/cat/view.php/vis/hashtables/hash-2001-2 Пример хеш таблицы]
 +
* [http://research.cs.vt.edu/AVresearch/hashing/double.php Пример хеш таблицы с двойным хешированием]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Хеширование]]
 
[[Категория: Хеширование]]

Версия 23:27, 11 июня 2012

Поиск свободного места при закрытом хешировании - задача, возникающая при создании хеш-таблицы, использующей так называемое закрытое хеширование.

При использовании открытого хеширования такой проблемы не возникает, так как там в каждой ячейке хранится список всех элементов. При добавлении необходимо просто добавить элемент в начало списка.

Закрытое хеширование работает иначе: в каждой ячейке хеш-таблицы хранится только один элемент. Тогда при добавлении, если ячейка свободна, мы просто записываем добавляемый элемент в эту ячейку. Однако если эта ячейка занята - необходимо поместить добавляемый элемент в какую-нибудь другую свободную ячейку. Такие ситуации нередки, так как невозможно использовать хеш-функцию, не дающую коллизий, а каждой ячейке таблицы соответствует одно значение хеш-функции. Далее мы рассмотрим несколько стратегий поиска свободного места в данном случае.

Стратегии поиска

Последовательный поиск

Последовательный поиск, частный случай линейного поиска.

При попытке добавить элемент в занятую ячейку [math]i[/math] начинаем последовательно просматривать ячейки [math]i+1, i+2, i+3[/math] и так далее, пока не найдём свободную ячейку. В неё и запишем элемент.

Линейный поиск

Линейный поиск с шагом q.

Выбираем шаг [math]q[/math]. При попытке добавить элемент в занятую ячейку [math]i[/math] начинаем последовательно просматривать ячейки [math]i+(1 \cdot q), i+(2 \cdot q), i+(3 \cdot q)[/math] и так далее, пока не найдём свободную ячейку. В неё и запишем элемент. По сути последовательный поиск - частный случай линейного, где [math]q=1[/math].

Квадратичный поиск

Квадратичный поиск.

Шаг [math]q[/math] не фиксирован, а изменяется квадратично: [math]q = 1,4,9,16...[/math]. Соответственно при попытке добавить элемент в занятую ячейку [math]i[/math] начинаем последовательно просматривать ячейки [math] i+1, i+4, i+9[/math] и так далее, пока не найдём свободную ячейку.

Возможные проблемы

При поиске элемента может получится так, что мы дойдём до конца таблицы. Обычно поиск продолжается, начиная с другого конца. Однако, если мы придём в ту ячейку, откуда начинался поиск, то добавить элемент в текущую таблицу будет невозможно и необходимо провести операцию перехеширования.

Проверка наличия элемента в таблице

Проверка осуществляется аналогично добавлению: мы проверяем ячейку [math]i[/math] и другие, в соответствии с выбранной стратегией, пока не найдём искомый элемент или свободную ячейку.

Проблемы закрытого хеширования

Проблем две - крайне нетривиальное удаление элемента из таблицы и образование кластеров. Кластер - последовательность занятых клеток. Их наличие замедляет все операции с хеш-таблицей: при добавлении требуется перебирать всё больше элементов, при проверке тоже. Чем больше в таблице элементов, тем больше в ней кластеры и тем выше вероятность того, что добавляемый элемент попадёт в кластер. Для защиты от кластеризации используется двойное хеширование и хеширование кукушки.

Двойное хеширование

Двойное хеширование — метод борьбы с коллизиями, возникающими при закрытом хешировании, основанный на использовании двух хеш-функций для построения различных последовательностей исследования хеш-таблицы.

Принцип двойного хеширования

При двойном хешировании используются две независимые хеш-функции [math] h_1(k) [/math] и [math] h_2(k) [/math]. Пусть [math] k [/math] — это наш ключ, [math] m [/math] — размер нашей таблицы, [math]n \mod m [/math] — остаток от деления [math] n [/math] на [math] m [/math], тогда сначала исследуется ячейка с адресом [math] h_1(k) [/math], если она уже занята, то рассматривается [math] (h_1(k) + h_2(k)) \mod m [/math], затем [math] (h_1(k) + 2 \cdot h_2(k)) \mod m [/math] и так далее. В общем случае идёт проверка последовательности ячеек [math] (h_1(k) + i \cdot h_2(k)) \mod m [/math] где [math] i = (0, 1, \; ... \;, m - 1) [/math]

Таким образом, операции вставки, удаления и поиска в лучшем случае выполняются за [math]O(1)[/math], в худшем — за [math]O(m)[/math], что не отличается от обычного линейного разрешения коллизий. Однако в среднем, при грамотном выборе хеш-функций, двойное хеширование будет выдавать лучшие результаты, за счёт того, что вероятность совпадения значений сразу двух независимых хеш-функций ниже, чем одной.

[math]\forall x \neq y \; \exists h_1,h_2 : p(h_1(x)=h_1(y))\gt p((h_1(x)=h_1(y)) \land (h_2(x)=h_2(y)))[/math]

Выбор хеш-функций

[math] h_1 [/math] может быть обычной хеш-функцией. Однако чтобы последовательность исследования могла охватить всю таблицу, [math] h_2 [/math] должна возвращать значения:

  • не равные [math] 0 [/math]
  • независимые от [math] h_1 [/math]
  • взаимно простые с величиной хеш-таблицы

Есть два удобных способа это сделать. Первый состоит в том, что в качестве размера таблицы используется простое число, а [math] h_2 [/math] возвращает натуральные числа, меньшие [math] m [/math]. Второй — размер таблицы является степенью двойки, а [math] h_2 [/math] возвращает нечетные значения.

Например, если размер таблицы равен [math] m [/math], то в качестве [math] h_2 [/math] можно использовать функцию вида [math] h_2(k) = k \mod (m-1) + 1 [/math]

Вставка при двойном хешировании

Пример

Показана хеш-таблица размером 13 ячеек, в которой используются вспомогательные функции:

[math] h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod 13 [/math]

[math] h_1(k) = k \mod 13 [/math]

[math] h_2(k) = 1 + k \mod 11 [/math]

Мы хотим вставить ключ 14. Изначально [math] i = 0 [/math]. Тогда [math] h(14,0) = (h_1(14) + 0\cdot h_2(14)) \mod 13 = 1 [/math]. Но ячейка с индексом 1 занята, поэтому увеличиваем [math] i [/math] на 1 и пересчитываем значение хеш-функции. Делаем так, пока не дойдем до пустой ячейки. При [math] i = 2 [/math] получаем [math] h(14,2) = (h_1(14) + 2\cdot h_2(14)) \mod 13 = 9 [/math]. Ячейка с номером 9 свободна, значит записываем туда наш ключ.

Таким образом, основная особенность двойного хеширования состоит в том, что при различных [math] k [/math] пара [math] (h_1(k),h_2(k)) [/math] дает различные последовательности ячеек для исследования.

Простая реализация

Пусть у нас есть некоторый объект [math] item [/math], в котором определено поле [math] key [/math], от которого можно вычислить хеш-функции [math] h_1(key)[/math] и [math] h_2(key) [/math]

Так же у нас есть таблица [math] table [/math] величиной [math] m [/math], состоящая из объектов типа [math] item [/math].

Вставка

add(item)
   x = h1(item.key)
   y = h2(item.key)
   for (i = 0; i < m; i++)    	
      if table[x] == null
         table[x] = item
         return      
      x = (x + y) mod m   
   table.resize() //ошибка, требуется увеличить размер таблицы

Поиск

search(key)
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++)
      if table[x] != null
         if table[x].key == key
            return table[x]
      else
         return null
      x = (x + y) mod m   
   return null

Реализация с удалением

Что бы наша хеш-таблица поддерживала удаление, требуется добавить массив [math]deleted[/math] типов [math]bool[/math], равный по величине массиву [math]table[/math]. Теперь при удалении мы просто будем помечать наш объект как удалённый, а при добавлении как не удалённый и замещать новым добавляемым объектом. При поиске, помимо равенства ключей, мы смотрим, удалён ли элемент, если да, то идём дальше.

Вставка

add(item)
   x = h1(item.key)
   y = h2(item.key)
   for (i = 0; i < m; i++)   	
      if table[x] == null || deleted[x]
         table[x] = item
         deleted[x] = false
         return      
      x = (x + y) mod m   
   table.resize() //ошибка, требуется увеличить размер таблицы

Поиск

search(key)
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++) 
      if table[x] != null
         if table[x].key == key && !deleted[x]
            return table[x]
      else
         return null
      x = (x + y) mod m   
   return null

Удаление

remove(key)
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++)
      if table[x] != null
         if table[x].key == key
            deleted[x] = true
      else 
         return
      x = (x + y) mod m

См. также

Литература

  • Бакнелл Дж. М. Фундаментальные алгоритмы и структуры данных в Delphi, 2003
  • Кнут Д. Э. Искусство программирования, том 3. Сортировка и поиск, 2-е издание, 2000
  • Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы. Построение и анализ, 2010
  • Седжвик Р. Фундаментальные алгоритмы на C. Части 1-4. Анализ. Структуры данных. Сортировка. Поиск, 2003

Ссылки