Поиск k-ой порядковой статистики за линейное время — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Идея алгоритма)
м (Описание алгоритма)
Строка 11: Строка 11:
 
== Описание алгоритма ==
 
== Описание алгоритма ==
 
#Все <tex>n</tex> элементов входного массива разбиваются на группы по пять элементов, в последней группе будет <tex>n</tex> <tex>\bmod</tex> <tex> 5</tex> элементов. Эта группа может оказаться пустой при <tex>n</tex> кратных <tex>5</tex>.
 
#Все <tex>n</tex> элементов входного массива разбиваются на группы по пять элементов, в последней группе будет <tex>n</tex> <tex>\bmod</tex> <tex> 5</tex> элементов. Эта группа может оказаться пустой при <tex>n</tex> кратных <tex>5</tex>.
#Сначала сортируется каждая группа, затем выбираем медиану в каждой из этих групп.
+
#Сначала сортируется каждая группа, затем из каждой группы выбирается медиана.
#Путем рекурсивного вызова шага 1 определяется медиана <tex>x</tex> из множества медиан, найденных на втором шаге. Где <tex>x</tex> рассекающий элемент, <tex>i</tex> индекс рассекающего элемента. Если медиан окажется четное количество, то на место рассекающего элемента будут претендовать две медианы, переменной <tex>x</tex> будет присвоено значение большей из этих двух медиан.
+
#Путем рекурсивного вызова шага определяется медиана <tex>x</tex> из множества медиан (верхняя медиана в случае чётного количества), найденных на втором шаге. Найденный элемент массива <tex>x</tex> используется как рассекающий (за <tex>i</tex> обозначим его индекс).
#Делим массив относительно рассекающего элемента <tex>x</tex>. Все элементы меньшие <tex>x</tex> будут находиться левее <tex>x</tex> в массиве и будут иметь меньший индекс и наоборот, если элементы больше <tex>x</tex>.
+
#Массив делится относительно рассекающего элемента <tex>x</tex>.
#Если <tex>i</tex> <tex>=</tex> <tex>k</tex>, то возвращается значение <tex>x</tex>. Иначе вызывается рекурсивно шаг 1, и выполняется поиск <tex>k</tex>-го в порядке возрастания элемента в левой части массива,если <tex>i</tex> <tex><</tex> <tex>k</tex>, или в правой части, если <tex>i</tex> <tex>></tex> <tex>k</tex>.
+
#Если <tex>i = k</tex>, то возвращается значение <tex>x</tex>. Иначе запускается рекурсивно поиск элемента в одной из частей массива: <tex>k</tex>-ой статистики в левой части при <tex>i > k</tex> или <tex>(k - i - 1)</tex>-ой статистики в правой части при <tex>i < k</tex>
  
 
=== Пример работы алгоритма ===
 
=== Пример работы алгоритма ===
Мы разберем в данном данном случае, поиск рассекающего элемента.
 
 
Рассмотрим работу алгоритма на массиве из <tex> 25 </tex> элементов, обозначенных кружками.
 
Рассмотрим работу алгоритма на массиве из <tex> 25 </tex> элементов, обозначенных кружками.
  
Строка 31: Строка 30:
 
[[Файл:поиск2.png| 300px]]
 
[[Файл:поиск2.png| 300px]]
  
Проведем анализ рассекающего элемента. На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по <tex> 8 </tex> элементов, всего же в массиве <tex> 25 </tex>, то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как <tex> 8  >  </tex> <tex>\frac{3 \cdot 25}{10}</tex>. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.
+
На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по <tex> 8 </tex> элементов, всего же в массиве <tex> 25 </tex>, то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как <tex> 8  > \frac{3 \cdot 25}{10}</tex>. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.
  
 
Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент <tex>x</tex>. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан <tex>x</tex>. Таким образом, как минимум <tex>n</tex> <tex>/</tex> <tex>10</tex> групп содержат по <tex>3</tex> превышающих величину <tex>x</tex>, за исключение группы, в которой меньше <tex>5</tex> элементов и ещё одной группы, содержащей сам элемент <tex>x</tex>. Таким образом получаем, что количество элементов больших  <tex>x</tex>, не менее <tex>\frac{3n}{10}</tex>.
 
Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент <tex>x</tex>. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан <tex>x</tex>. Таким образом, как минимум <tex>n</tex> <tex>/</tex> <tex>10</tex> групп содержат по <tex>3</tex> превышающих величину <tex>x</tex>, за исключение группы, в которой меньше <tex>5</tex> элементов и ещё одной группы, содержащей сам элемент <tex>x</tex>. Таким образом получаем, что количество элементов больших  <tex>x</tex>, не менее <tex>\frac{3n}{10}</tex>.

Версия 12:44, 12 июня 2012

Определение:
[math]k[/math]-ой порядковой статистикой набора элементов линейно упорядоченного множества называется такой его элемент, который является [math]k[/math]-ым элементом набора в порядке сортировки

Историческая справка

Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году.

Идея алгоритма

Этот алгоритм является модификацией алгоритма поиска k-ой порядковой статистики. Важное отличие заключается в том, что время работы алгоритма в наихудшем случае — [math]O(n)[/math], где [math]n[/math] — количество элементов в множестве. Главная идея алгоритма заключается в том, чтобы гарантировать хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее [math]\frac{3n}{10}[/math]. Элементов же больших опорного элемента, также не менее [math]\frac{3n}{10}[/math]. Благодаря этому алгоритм работает за линейное время в любом случае.

Описание алгоритма

  1. Все [math]n[/math] элементов входного массива разбиваются на группы по пять элементов, в последней группе будет [math]n[/math] [math]\bmod[/math] [math] 5[/math] элементов. Эта группа может оказаться пустой при [math]n[/math] кратных [math]5[/math].
  2. Сначала сортируется каждая группа, затем из каждой группы выбирается медиана.
  3. Путем рекурсивного вызова шага определяется медиана [math]x[/math] из множества медиан (верхняя медиана в случае чётного количества), найденных на втором шаге. Найденный элемент массива [math]x[/math] используется как рассекающий (за [math]i[/math] обозначим его индекс).
  4. Массив делится относительно рассекающего элемента [math]x[/math].
  5. Если [math]i = k[/math], то возвращается значение [math]x[/math]. Иначе запускается рекурсивно поиск элемента в одной из частей массива: [math]k[/math]-ой статистики в левой части при [math]i \gt k[/math] или [math](k - i - 1)[/math]-ой статистики в правой части при [math]i \lt k[/math]

Пример работы алгоритма

Рассмотрим работу алгоритма на массиве из [math] 25 [/math] элементов, обозначенных кружками.

На вход подается массив, разобьем элементы на группы по 5 элементов. Отсортируем элементы каждой группы и выберем медианы. Полученные медианы групп отмечены белыми кружками.

Поиск.png


Рекурсивно вызовемся от медиан групп и получим рассекающий элемент. На рисунке он обозначен белым кружком, внутри которого изображен символ [math] x [/math].


Поиск2.png

На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по [math] 8 [/math] элементов, всего же в массиве [math] 25 [/math], то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как [math] 8 \gt \frac{3 \cdot 25}{10}[/math]. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.

Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент [math]x[/math]. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан [math]x[/math]. Таким образом, как минимум [math]n[/math] [math]/[/math] [math]10[/math] групп содержат по [math]3[/math] превышающих величину [math]x[/math], за исключение группы, в которой меньше [math]5[/math] элементов и ещё одной группы, содержащей сам элемент [math]x[/math]. Таким образом получаем, что количество элементов больших [math]x[/math], не менее [math]\frac{3n}{10}[/math].

Проведя аналогичные рассуждения для элементов, которые меньше по величине, чем рассекающий элемент [math]x[/math], мы получим, что как минимум [math]\frac{3n}{10}[/math] меньше, чем элемент [math]x[/math]. Теперь проведем анализ времени работы алгоритма.

Поиск5.png

Анализ времени работы алгоритма

Пусть [math]T(n)[/math] — время работы алгоритма для [math]n[/math] элементов, тогда оно не больше, чем сумма:

  1. времени работы на сортировку групп и разбиение по рассекающему элементу, то есть [math]Cn[/math];
  2. времени работы для поиска медианы медиан, то есть [math]T(\frac{n}{5})[/math];
  3. времени работы для поиска [math]k[/math]-го элемента в одной из двух частей массива, то есть [math]T(s)[/math], где [math]s[/math] — количество элементов в этой части. Но [math]s[/math] не превосходит [math]\frac{7n}{10}[/math], так как чисел, меньших рассекающего элемента, не менее [math]\frac{3n}{10}[/math] — это [math]\frac{n}{10}[/math] медиан, меньших медианы медиан, плюс не менее [math]\frac{2n}{10}[/math] элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее [math]\frac{3n}{10}[/math], следовательно [math] s \le \frac{7n}{10}[/math], то есть в худшем случае [math] s = \frac{7n}{10}[/math].

Тогда получаем, что [math]T(n) \le T(\frac{n}{5}) + T(\frac{7n}{10}) + Cn [/math]

Покажем, что для всех [math] n [/math] выполняется неравенство [math]T(n) \le 10Cn [/math].

Докажем по индукции:

  1. Предположим, что наше неравенство [math]T(n) \le 10Cn [/math] выполняется при малых [math] n [/math], для некоторой достаточно большой константы [math] C [/math].
  2. Тогда, по предположению индукции, [math]T(\frac{n}{5}) \le 10C\frac{n}{5} = 2Cn[/math] и [math] T(\frac{7n}{10}) \le 10C\frac{7n}{10} = 7Cn[/math], тогда

[math]T(n) \le T(\frac{n}{5}) + T(\frac{7n}{10}) + Cn = 2Cn + 7Cn + Cn = 10Cn \Rightarrow T(n) \le 10Cn[/math]

Так как [math]T(n) \le 10Cn [/math], то время работы алгоритма [math]O(n)[/math]

Литература

  • Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ

Ссылки