АВЛ-дерево — различия между версиями
(→Балансировка) |
|||
Строка 49: | Строка 49: | ||
|- | |- | ||
|'''Малое левое вращение''' | |'''Малое левое вращение''' | ||
− | | [[Файл: | + | | [[Файл:40 03.png|2000x150px]] |
|<tex>h(b) - h(L) = 2</tex> и <tex>h(C) \le h(R)</tex>. | |<tex>h(b) - h(L) = 2</tex> и <tex>h(C) \le h(R)</tex>. | ||
<tex>diff[a] = -2</tex> и <tex>diff[b] = -1</tex> | <tex>diff[a] = -2</tex> и <tex>diff[b] = -1</tex> | ||
Строка 66: | Строка 66: | ||
|- | |- | ||
|'''Большое левое вращение''' | |'''Большое левое вращение''' | ||
− | | [[Файл: | + | | [[Файл:40 04.png|2000x150px]] |
|<tex>h(b) - h(L) = 2</tex> и <tex>h(c) > h(R)</tex>. | |<tex>h(b) - h(L) = 2</tex> и <tex>h(c) > h(R)</tex>. | ||
<tex>diff[a] = -2</tex> , <tex>diff[b] = 1</tex> и <tex>diff[c] = 1</tex> | <tex>diff[a] = -2</tex> , <tex>diff[b] = 1</tex> и <tex>diff[c] = 1</tex> | ||
Строка 88: | Строка 88: | ||
<tex>diff[a] = 0</tex>, <tex>diff[b] = 0</tex> и <tex>diff[c] = 0</tex> | <tex>diff[a] = 0</tex>, <tex>diff[b] = 0</tex> и <tex>diff[c] = 0</tex> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | Малое правое и большое правое вращение определяются симметрично малому левому и большому левому вращению. | ||
В каждом случае операция приводит к нужному результату, а полная высота уменьшается не более чем на 1 и не может увеличиться. | В каждом случае операция приводит к нужному результату, а полная высота уменьшается не более чем на 1 и не может увеличиться. | ||
Версия 13:26, 12 июня 2012
АВЛ-дерево — сбалансированное двоичное дерево поиска, в котором поддерживается следующее свойство: для каждой его вершины высота её двух поддеревьев различается не более чем на 1.
АВЛ-деревья названы по первым буквам фамилий их изобретателей, Г. М. Адельсона-Вельского и Е. М. Ландиса, которые впервые предложили использовать АВЛ-деревья в 1962 году.
Содержание
Высота дерева
Теорема: | ||||||
АВЛ-дерево с ключами имеет высоту . | ||||||
Доказательство: | ||||||
Высоту поддерева с корнем будем обозначать как , высоту поддерева — как .
Логарифмируя по основанию , получаемТаким образом, получаем, что высота AVL-дерева из n вершин — . | ||||||
Балансировка
Балансировкой вершины называется операция, которая в случае разницы высот левого и правого поддеревьев
, изменяет связи предок-потомок в поддереве данной вершины так, чтобы восстановилось свойство дерева , иначе ничего не меняет. Для балансировки будем хранить для каждой вершины разницу между высотой её левого и правого поддереваДля балансировки вершины используются один из 4 типов вращений:
Тип вращения | Иллюстрация | Когда используется | Расстановка балансов |
---|---|---|---|
Малое левое вращение | и или и . |
и .
| |
Большое левое вращение | , и или , и или , и . |
и .
|
Малое правое и большое правое вращение определяются симметрично малому левому и большому левому вращению. В каждом случае операция приводит к нужному результату, а полная высота уменьшается не более чем на 1 и не может увеличиться.
Все операции вращения, очевидно, требуют
операций.Операции
Добавление вершины
Пусть нам надо добавить ключ
. Будем спускаться по дереву, как при поиске ключа . Если мы стоим в вершине и нам надо идти в поддерево, которого нет, то делаем ключ листом, а вершину его корнем. Дальше поднимаемся вверх по пути поиска и пересчитываем баланс у вершин. Если мы поднялись в вершину из левого поддерева, то увеличивается на единицу, если из правого, то уменьшается на единицу. Если пришли в вершину и её баланс стал равным нулю, то это значит высота поддерева не изменилась и подъём останавливается. Если пришли в вершину и её баланс стал равным 1 или -1, то это значит высота поддерева изменилась и подъём продолжается. Если пришли в вершину и её баланс стал равным 2 или -2, то делаем одно из четырёх вращений и, если после вращения баланс стал равным нулю, то останавливаемся, иначе продолжаем подъём.Так как в процессе добавления вершины мы рассматриваем не более, чем
вершин дерева, и для каждой запускаем балансировку не более одного раза, то суммарное количество операций при включении новой вершины в дерево составляет операций.Удаление вершины
Для простоты опишем рекурсивный алгоритм удаления. Если вершина - лист, то удалим её, иначе найдём самую близкую по значению вершину , переместим её на место удаляемой вершины и удалим вершину . От удалённой вершины будем подниматься вверх к корню и пересчитывать баланс у вершин. Если мы поднялись в вершину из левого поддерева, то уменьшается на единицу, если из правого, то увеличивается на единицу. Если пришли в вершину и её баланс стал равным 1 или -1, то это значит, что высота этого поддерева не изменилась и подъём можно остановить. Если баланс вершины стал равным нулю, то высота поддерева уменьшилась и подъём нужно продолжить. Если баланс стал равным 2 или -2, следует выполнить одно из четырёх вращений и, если после вращений баланс вершины стал равным нулю, то подъём продолжается, иначе останавливается.
В результате указанных действий на удаление вершины и балансировку суммарно тратится, как и ранее,
операций. Таким образом, требуемое количество действий — .Поиск вершины, минимум/максимум в дереве, etc.
Остальные операции не меняют структуры дерева, поэтому выполняются так же, как и в наивной реализации дерева поиска.
Слияние двух AVL-деревьев
Дано два дерева
и , все ключи в меньше ключей в , .В дереве
удаляем самую правую вершину, назовём её . Высота дерева может уменьшиться на единицу. В дереве идём от корня всегда в левое поддерево и, когда высота этого поддерева будет равна высоте дерева , делаем новое дерево , корнем будет вершина , левым поддеревом будет дерево , а правым дерево . Теперь в дереве у вершины, в которой мы остановились при спуске, левым поддеревом делаем дерево и запускаем балансировку. Таким образом, дерево будет результатом слияния двух АВЛ-деревьев.Дерево
и до слиянияДерево
после слияния