Теоретическая оценка времени работы алгоритмов RMHC и (1+1)-ES для задач OneMax и MST — различия между версиями
Agapova (обсуждение | вклад) м (→Оценка времени решения OneMax) |
Agapova (обсуждение | вклад) м (→Drift theorem) |
||
Строка 138: | Строка 138: | ||
Тогда <tex>T = \min\{t \in \mathbb{N}_0 | X_t = 0\}</tex> удовлетворяет | Тогда <tex>T = \min\{t \in \mathbb{N}_0 | X_t = 0\}</tex> удовлетворяет | ||
− | <tex>E(T) \leq | + | <tex>E(T) \leq \frac{1}{\delta}(\ln(X_0) + 1)</tex> |
===An Improved Drift theorem=== | ===An Improved Drift theorem=== |
Версия 14:09, 17 июня 2012
Содержание
Постановка задачи однокритериальной оптимизации
- пространство решений (дискретно),
- оценочная функция.
Задача: найти
. При этом рассматривается black-box scenario, что означает, что получить информацию об можно только путем ее вычисления.Методы решения
HC(Hill Climbing)
xrandom while(true) x' neibor(x) f(x') f(x) x = x'
Итерации выполняются, пока не будет удовлетворен критерий останова. Возможны два варианта HC:
1) first ascent --- в качестве
выбирается первый из соседей, для которого2) steepest ascent --- осуществляется перебор всех соседей, и в качестве
выбирается тот, для которого максимальноRMHC (Random Mutation Hill Climbing)
Та же схема, что и для HC, но
получают путем случайного изменения одного из компонентов решения .ES (Evolution Strategies)
1)
--- после внесения случайного изменения в каждый из компонентов , может оказаться любым элементом , но, чем он ближе к , тем выше вероятность его выбора.2)
--- генерируется промежуточных решений, среди них выбирается лучшее.3)
--- генерируется промежуточных решений, среди них выбирается лучших.
Примеры задач
OneMax
Найти битовую строку длины
, состоящую из одних единиц. Оценочная функция:
MST (Minimum spanning tree)
Дан связный неориентированный граф
, с ребрами веса . Требуется найти минимальное остовное дерево минимального веса .Оценка времени решения OneMax
Утверждение 1:
Доказательство:
Утверждение 2:
Доказательство:
1)
2)
Утверждение 3:
Доказательство:
по Утверждению 1, отсюда следует Утверждение 3.
Утверждение 4:
Доказательство:
по Утверждениям 1 и 4.
Утверждение 5 (Лемма об ожидании):
Если вероятность наступления события
на каждом шаге равна , то матожидание наступления этого события
Доказательство:
Продиффиренцировав, получаем:
Алгоритм RMHC
На каждом шаге равномерно выбираем и инвертируем один бит из
. Пусть --- значение в начале фазы. При фаза заканчивается.Оценим время работы алгоритма для данной задачи.
Вероятность окончания фазы
. Тогда по Утверждению 5 для конкретной фазы.Отсюда ожидаемая продолжительность всех фаз:
Алгоритм (1+1)-ES
Независимо для каждого бита инвертируем его с вероятностью
. Пусть --- значение в начале фазы. При фаза заканчивается.Оценим время работы алгоритма для данной задачи.
Вероятность окончания фазы
по утверждению 3. Тогда по Утверждению 5 для конкретной фазы.Отсюда ожидаемая продолжительность всех фаз меньше либо равна:
Оценка времени решения MST
Drift theorem
Пусть
--- неотрицательные целочисленные случайные величины и существует такое что:.
Тогда
удовлетворяет
An Improved Drift theorem
Пусть
--- случайные величины из и существует такое что:.
Тогда
удовлетворяет
(1+1)-ES для MST
Решение представляет собой битовую строку
длины , где , если , и в обратном случае.Мутация: независимо для каждого бита инвертируем его с вероятностью
Фитнес-функция:
, где --- число компонент связности в текущем .Теорема. [Neumann, Wegener (2004)]: Ожидаемое время работы (1+1)-EA для задачи MST
, где --- максимальный вес ребра.Доказательство.
1) Пусть после
итераций связно: после итерацииЕсли
, то существует как минимум ребер, которые не входят в и добавление которых уменьшает
Применяя теорему о дрифте, получаем требуемый результат.
2) Пусть
уже связно. Тогда оно остается связным и на дальнейших итерациях.Пусть
для после итерации .Если
, то существуют из и из такие, что--- это MST,
следовательно
, и для всех--- основное дерево с .
С верояностью
, одна итерация обменяет в точности ребра и .
Используем теорему о дрифте, учитывая, что
, и получаем требуемый результат.