1pi=1wirisumwi(ci - pi -ri) — различия между версиями
Dimitrova (обсуждение | вклад) (→Описание алгоритма) |
Dimitrova (обсуждение | вклад) (→Доказательство корректности алгоритма) |
||
Строка 17: | Строка 17: | ||
==Доказательство корректности алгоритма== | ==Доказательство корректности алгоритма== | ||
− | + | {{Теорема | |
+ | |statement= | ||
+ | Расписание, построенное данным алгоритмом, является корректным и оптимальным. | ||
+ | |proof= | ||
+ | Доказательство будем вести от противного.<br/> | ||
Рассмотрим расписание <tex>S_{1}</tex>, полученное после выполнения нашего алгоритма, и оптимальное расписание <tex>S_{2}</tex>.<br/> | Рассмотрим расписание <tex>S_{1}</tex>, полученное после выполнения нашего алгоритма, и оптимальное расписание <tex>S_{2}</tex>.<br/> | ||
Возьмём первый момент времени <tex>t_{1}</tex>, когда расписания различаются. Пусть в этот момент времени в <tex>S_{1}</tex>, будет выполняться работа с весом <tex>w_{1}</tex>, а в <tex>S_{2}</tex> {{---}} работа с весом <tex>w_{2}</tex>.<br/> | Возьмём первый момент времени <tex>t_{1}</tex>, когда расписания различаются. Пусть в этот момент времени в <tex>S_{1}</tex>, будет выполняться работа с весом <tex>w_{1}</tex>, а в <tex>S_{2}</tex> {{---}} работа с весом <tex>w_{2}</tex>.<br/> | ||
Строка 26: | Строка 30: | ||
Первая скобка отрицательная: <tex>t_{1} < t_{2}</tex>. Вторая скобка тоже отрицательная из того, что в <tex>S_{1}</tex> работа с весом <tex>w_1</tex> выполняется раньше, значит её вес должен быть больше <tex>w_2</tex>.<br/> | Первая скобка отрицательная: <tex>t_{1} < t_{2}</tex>. Вторая скобка тоже отрицательная из того, что в <tex>S_{1}</tex> работа с весом <tex>w_1</tex> выполняется раньше, значит её вес должен быть больше <tex>w_2</tex>.<br/> | ||
Итого имеем, что ответ для <tex>S_{2}</tex> больше, чем ответ для <tex>S_{3}</tex>. Следовательно расписание <tex>S_2</tex> неоптимальное. Получили противоречие. Значит не существует такого момента времени, когда расписание <tex>S_{1}</tex> отличается от оптимального. Следовательно мы доказали, что оно оптимальное. | Итого имеем, что ответ для <tex>S_{2}</tex> больше, чем ответ для <tex>S_{3}</tex>. Следовательно расписание <tex>S_2</tex> неоптимальное. Получили противоречие. Значит не существует такого момента времени, когда расписание <tex>S_{1}</tex> отличается от оптимального. Следовательно мы доказали, что оно оптимальное. | ||
+ | }} |
Версия 21:53, 18 июня 2012
Постановка задачи
Рассмотрим задачу:
- Дано работ и один станок.
- Для каждой работы известно её время появления и вес . Время выполнения всех работ равно .
Требуется выполнить все работы, чтобы значение
было минимальным.Описание алгоритма
Пусть
Для каждого очередного значения , которое изменяется от до времени окончания последний работы, будем:
- Выбирать работу из множества невыполненных работ, у которой и значение максимально.
- Если мы смогли найти работу , то выполняем её в момент времени
- Увеличиваем на один.
Доказательство корректности алгоритма
Теорема: |
Расписание, построенное данным алгоритмом, является корректным и оптимальным. |
Доказательство: |
Доказательство будем вести от противного. Первая скобка отрицательная: |