Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
|||
| Строка 68: | Строка 68: | ||
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (<tex>x \in [x_1, x_n]</tex>) и "внешних" точек <tex>x < x_1</tex> или <tex>x > x_n</tex>. | Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (<tex>x \in [x_1, x_n]</tex>) и "внешних" точек <tex>x < x_1</tex> или <tex>x > x_n</tex>. | ||
| − | {{Теорема | + | {{Теорема |
| + | |id=1 | ||
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество ррешение <tex>(x_1, x_2, \ldots, x_d \right) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек. | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество ррешение <tex>(x_1, x_2, \ldots, x_d \right) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек. | ||
|proof= | |proof= | ||
| Строка 74: | Строка 75: | ||
}} | }} | ||
| − | {{Теорема | + | {{Теорема |
| + | |id=2 | ||
|statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>(x_1, x_2, \ldots, x_d \right) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x < x_1</tex>, и достигает <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x > x_n</tex>. | |statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>(x_1, x_2, \ldots, x_d \right) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x < x_1</tex>, и достигает <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x > x_n</tex>. | ||
|proof= | |proof= | ||
| Строка 82: | Строка 84: | ||
Совместно Теоремы 1 и 2 приводят к следующим следствиям: | Совместно Теоремы 1 и 2 приводят к следующим следствиям: | ||
| − | { | + | '''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex> |
| − | + | ||
| + | Пусть <tex>f \in \mathbb{F}, n > 4</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда: | ||
<tex> \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}</tex> | <tex> \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}</tex> | ||
| − | |||
| − | |||
| − | |||
| − | + | ||
| + | '''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex> | ||
| + | |||
| + | Пусть <tex>f \in \mathbb{F}, n > 4</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда если | ||
| + | |||
| + | <tex> n \geq 2 + \max{\sqrt{A/a}}{\sqrt{B/b}}</tex> | ||
| + | |||
| + | или <tex>R_x \leq - \sqrt{Aa}/n, R_y \leq - \sqrt{Bb}/n</tex>, | ||
| + | тогда: | ||
| + | |||
| + | <tex> \alpha _{HYP} \leq 1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, | ||
| + | |||
| + | то есть: | ||
| + | <tex> \alpha _{HYP} </tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, что и требовалось доказать. | ||
=Примечание= | =Примечание= | ||
Версия 05:24, 19 июня 2012
Содержание
Основные определения
| Определение: |
| Множество называется Парето оптимальным, если:
, где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. |
| Определение: |
| Множество решений называется -аппроксимацией функции , если:
Коэффицент аппроксимации функции на равен: аппроксимация Оптимальный коэффицент аппроксимации |
Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Рассмотрим функции вида: , где убывает и . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Множество всех таких функций обозначим через . Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n () и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема () и докажем, что для количества точек они одинаковы, а именно .
Индикатор гиперобъема
| Определение: |
| Пусть дано множество решения . Пусть также множество всех решений усечено некоторой точкой . Тогда:
, где через обозначена мера множества по Лебегу. Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant). |
| Утверждение: |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение на |
| См. [Гиперобъем] |
Нахождение лучшего коэффициента аппроксимации
[Доказательство] ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
| Утверждение: |
Пусть и .
Тогда [MINCON] данного множество решения: |
|
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями. Пусть - длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое меньше чем среднее арифметическое: Преобразуя, получаем искомое. |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" () и "внешних" точек или .
| Теорема: |
Пусть . Любое множество ррешение достигает мультипликативной аппроксимации всех внутренних точек. |
| Доказательство: |
| Доказательство производится от противного, принимая предположение, что существует такой , для которого бы не не выполнялось условие аппроксимации при данном коэффициенте. |
| Теорема: |
Пусть . И является точкой отсчета. Каждое множество решение достигает мультипликативной аппроксимации всех точек с , и достигает мультипликативной аппроксимации всех точек с . |
| Доказательство: |
| Доказательство производится c использованием ранее доказонного утверждения о MINCON. |
Совместно Теоремы 1 и 2 приводят к следующим следствиям:
Следствие:
Пусть . И является точкой отсчета. Тогда:
Следствие:
Пусть . И является точкой отсчета. Тогда если
или , тогда:
= ,
то есть: = , что и требовалось доказать.
Примечание
Конечно, зависимость от и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.
