Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
|||
Строка 70: | Строка 70: | ||
{{Теорема | {{Теорема | ||
|id=1 | |id=1 | ||
− | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество ррешение <tex>(x_1, x_2, \ldots, x_d | + | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество ррешение <tex>(x_1, x_2, \ldots, x_d) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек. |
|proof= | |proof= | ||
Доказательство производится от противного, принимая предположение, что существует такой <tex> x</tex>, для которого бы не не выполнялось условие аппроксимации при данном коэффициенте. | Доказательство производится от противного, принимая предположение, что существует такой <tex> x</tex>, для которого бы не не выполнялось условие аппроксимации при данном коэффициенте. | ||
Строка 77: | Строка 77: | ||
{{Теорема | {{Теорема | ||
|id=2 | |id=2 | ||
− | |statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>(x_1, x_2, \ldots, x_d | + | |statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>(x_1, x_2, \ldots, x_d) \in X_{HYP}^f </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x < x_1</tex>, и достигает <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x > x_n</tex>. |
|proof= | |proof= | ||
Доказательство производится c использованием ранее доказонного утверждения о MINCON. | Доказательство производится c использованием ранее доказонного утверждения о MINCON. | ||
}} | }} | ||
+ | |||
Совместно Теоремы 1 и 2 приводят к следующим следствиям: | Совместно Теоремы 1 и 2 приводят к следующим следствиям: |
Версия 05:26, 19 июня 2012
Содержание
Основные определения
Определение: |
Множество , где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | называется Парето оптимальным, если:
Определение: |
Множество решений
Коэффицент аппроксимации функции Оптимальный коэффицент аппроксимации на равен: аппроксимация | называется -аппроксимацией функции , если:
Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Рассмотрим функции вида:
, где убывает и . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .Множество всех таких функций обозначим через чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того,Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (
) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ( ) и докажем, что для количества точек они одинаковы, а именно .Индикатор гиперобъема
Определение: |
Пусть дано множество решения Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant). , где через обозначена мера множества | . Пусть также множество всех решений усечено некоторой точкой . Тогда:
Утверждение: |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение на |
См. [Гиперобъем] |
Нахождение лучшего коэффициента аппроксимации
[Доказательство] ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение: |
Пусть и .
Тогда [MINCON] данного множество решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями. Пусть - длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое меньше чем среднее арифметическое: Преобразуя, получаем искомое. |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек или .Теорема: |
Пусть . Любое множество ррешение достигает мультипликативной аппроксимации всех внутренних точек. |
Доказательство: |
Доказательство производится от противного, принимая предположение, что существует такой | , для которого бы не не выполнялось условие аппроксимации при данном коэффициенте.
Теорема: |
Пусть . И является точкой отсчета. Каждое множество решение достигает мультипликативной аппроксимации всех точек с , и достигает мультипликативной аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказонного утверждения о MINCON. |
Совместно Теоремы 1 и 2 приводят к следующим следствиям:
Следствие:
Пусть
. И является точкой отсчета. Тогда:
Следствие:
Пусть
. И является точкой отсчета. Тогда если
или
, тогда:= ,
то есть:
= , что и требовалось доказать.Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.