|
|
Строка 19: |
Строка 19: |
| |about=2 | | |about=2 |
| |definition=Коэффициентом аппроксимации функции <tex>f</tex> на <tex>X</tex> называется | | |definition=Коэффициентом аппроксимации функции <tex>f</tex> на <tex>X</tex> называется |
− | <tex>\mathrm{\alpha (f, X) = inf \{\alpha | X} - \alpha</tex>-аппроксимация <tex>f \}</tex>. | + | <tex>\mathrm{\alpha (f, X) = inf \{\alpha | X} — \alpha</tex>-аппроксимация <tex>f \}</tex>. |
| }} | | }} |
| | | |
Строка 40: |
Строка 40: |
| |proof= | | |proof= |
| Рассмотрим <tex>\alpha = (\frac{A}{a})^{\frac{1}{n}}</tex>, тогда <tex>x_i=a \alpha^i(i=1 \ldots n)</tex>. | | Рассмотрим <tex>\alpha = (\frac{A}{a})^{\frac{1}{n}}</tex>, тогда <tex>x_i=a \alpha^i(i=1 \ldots n)</tex>. |
− | <tex>\{x_i\}</tex> - <tex>\alpha</tex>-аппроксимация, т.к. <tex>\forall x \in [x_i, x_{i+1}]: f(x) \leq \alpha f(x_i)</tex>. | + | <tex>\{x_i\}</tex> — <tex>\alpha</tex>-аппроксимация, т.к. <tex>\forall x \in [x_i, x_{i+1}]: f(x) \leq \alpha f(x_i)</tex>. |
| Следовательно, <tex>\alpha_{opt} \leq \alpha</tex>. | | Следовательно, <tex>\alpha_{opt} \leq \alpha</tex>. |
| }} | | }} |
Строка 52: |
Строка 52: |
| Тогда <tex>f(x_i) \geq B \alpha^{-i}</tex>. | | Тогда <tex>f(x_i) \geq B \alpha^{-i}</tex>. |
| Следовательно, <tex>\not \exists x: f(x_i)>f(x)>B \alpha^{-1}</tex>. | | Следовательно, <tex>\not \exists x: f(x_i)>f(x)>B \alpha^{-1}</tex>. |
− | Таким образом, <tex>\{x_i\}</tex> - <tex>\alpha</tex>-аппроксимация, так как <tex>B \alpha^{-i} \leq f(x) \leq B \alpha^{-i+1}</tex>. | + | Таким образом, <tex>\{x_i\}</tex> — <tex>\alpha</tex>-аппроксимация, так как <tex>B \alpha^{-i} \leq f(x) \leq B \alpha^{-i+1}</tex>. |
| }} | | }} |
| | | |
Строка 59: |
Строка 59: |
| Пусть <tex>\forall i \in \{0, 1, \ldots, n\} f(x)=B(B/b)^{-i/n}</tex> на интервале <tex>(a(A/a)^{(i-1)/n}, a(A/a)^{i/n}]</tex>. | | Пусть <tex>\forall i \in \{0, 1, \ldots, n\} f(x)=B(B/b)^{-i/n}</tex> на интервале <tex>(a(A/a)^{(i-1)/n}, a(A/a)^{i/n}]</tex>. |
| | | |
− | Теперь <tex>f</tex> - это фронт Парето из <tex>n+1</tex> слоя. Предложим, множество решений <tex>\{x_1,x_2, \ldots , x_n\}</tex> из <tex>n</tex> точек. По принципу Дирихле получается, что хотя бы на одном уровне нет ни одного решения. Это означает, что верхняя граница этого уровня аппроксимируется значением <tex>\min ( \frac{A}{a}, \frac{B}{b})^{\frac{1}{n}}</tex>. | + | Теперь <tex>f</tex> — это фронт Парето из <tex>n+1</tex> слоя. Предложим, множество решений <tex>\{x_1,x_2, \ldots , x_n\}</tex> из <tex>n</tex> точек. По принципу Дирихле получается, что хотя бы на одном уровне нет ни одного решения. Это означает, что верхняя граница этого уровня аппроксимируется значением <tex>\min ( \frac{A}{a}, \frac{B}{b})^{\frac{1}{n}}</tex>. |
| | | |
| }} | | }} |
Строка 117: |
Строка 117: |
| <tex>= \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(\lim\limits_{i \rightarrow \infty} f(x_i^j) - r) = \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(f(x_i) - r) = HYP(X)</tex> | | <tex>= \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(\lim\limits_{i \rightarrow \infty} f(x_i^j) - r) = \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(f(x_i) - r) = HYP(X)</tex> |
| | | |
− | Получается, что <tex>HYP(X)</tex> - верхняя полунепрерывная, следовательно, экстремум <tex>HYP</tex> достигается на компакте. | + | Получается, что <tex>HYP(X)</tex> — верхняя полунепрерывная, следовательно, экстремум <tex>HYP</tex> достигается на компакте. |
| }} | | }} |
| | | |
Строка 179: |
Строка 179: |
| | | |
| = Источники = | | = Источники = |
− | # [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation] | + | # [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. — The Maximum Hypervolume Set Yields Near-optimal Approximation] |
− | # [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/3/multiobjectivization.pdf Corne D., Knowles J., Watson R. - Reducing Local Optima in Single-Objective Problems by Multi-objectivization] | + | # [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/3/multiobjectivization.pdf Corne D., Knowles J., Watson R. — Reducing Local Optima in Single-Objective Problems by Multi-objectivization] |
− | # [http://www.mpi-inf.mpg.de/~tfried/paper/2009GECCO.pdf Friedrich T., Horoba C., Neumann F. - Multiplicative Approximations and the Hypervolume Indicator] | + | # [http://www.mpi-inf.mpg.de/~tfried/paper/2009GECCO.pdf Friedrich T., Horoba C., Neumann F. — Multiplicative Approximations and the Hypervolume Indicator] |
− | # [ftp://ife.ee.ethz.ch/pub/people/zitzler/ZK2004a.pdf Kunzli S., Zitzle E. - Indicator-Based Selection in Multiobjective Search] | + | # [ftp://ife.ee.ethz.ch/pub/people/zitzler/ZK2004a.pdf Kunzli S., Zitzle E. — Indicator-Based Selection in Multiobjective Search] |
Основные определения
Рассмотрим функции вида: [math]f:[a,A] \rightarrow [b,B][/math], где [math]f[/math] убывает и [math]f(a)=B, f(A)=b[/math].
Множество всех таких функций обозначим через [math]\mathbb{F}[/math].
Введем несколько понятий.
Аппроксимация функции
Определение: |
Множество решений [math]\mathrm{X=\{x_1,x_2, \ldots , x_n\}}[/math] называется [math]\alpha[/math]-аппроксимацией функции [math]f \in \mathbb{F}[/math], если
[math]\mathrm{\forall x \in [a,A] \exists x_i \in X : (x \leq \alpha x_i) \bigwedge (f(x) \leq \alpha f(x_i))}[/math]. |
Множество всех множеств решений обозначим через [math]\mathbb{X}[/math].
Коэффициент аппроксимации
Определение: |
Коэффициентом аппроксимации функции [math]f[/math] на [math]X[/math] называется
[math]\mathrm{\alpha (f, X) = inf \{\alpha | X} — \alpha[/math]-аппроксимация [math]f \}[/math]. |
Определение: |
Оптимальный коэффициент аппроксимации [math]\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{X \in \mathbb{X}} \alpha (f, X)[/math]. |
Теорема (1): |
[math]\alpha_{opt} = min ( \frac{A}{a}, \frac{B}{b})^{\frac{1}{n}}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Утверждение (1): |
[math]\alpha_{opt} \leq (\frac{A}{a})^{\frac{1}{n}}[/math] |
[math]\triangleright[/math] |
Рассмотрим [math]\alpha = (\frac{A}{a})^{\frac{1}{n}}[/math], тогда [math]x_i=a \alpha^i(i=1 \ldots n)[/math].
[math]\{x_i\}[/math] — [math]\alpha[/math]-аппроксимация, т.к. [math]\forall x \in [x_i, x_{i+1}]: f(x) \leq \alpha f(x_i)[/math].
Следовательно, [math]\alpha_{opt} \leq \alpha[/math]. | [math]\triangleleft[/math] |
Утверждение (2): |
[math]\alpha_{opt} \leq (\frac{B}{b})^{\frac{1}{n}}[/math] |
[math]\triangleright[/math] |
Рассмотрим [math]\alpha = (\frac{B}{b})^{\frac{1}{n}}[/math] и [math]x_i=f^{-1}(B \alpha^{-i})(i=1 \ldots n)[/math].
Тогда [math]f(x_i) \geq B \alpha^{-i}[/math].
Следовательно, [math]\not \exists x: f(x_i)\gt f(x)\gt B \alpha^{-1}[/math].
Таким образом, [math]\{x_i\}[/math] — [math]\alpha[/math]-аппроксимация, так как [math]B \alpha^{-i} \leq f(x) \leq B \alpha^{-i+1}[/math]. | [math]\triangleleft[/math] |
Получили [math]\alpha_{opt} \geq min ( \frac{A}{a}, \frac{B}{b})^{\frac{1}{n}}[/math].
Пусть [math]\forall i \in \{0, 1, \ldots, n\} f(x)=B(B/b)^{-i/n}[/math] на интервале [math](a(A/a)^{(i-1)/n}, a(A/a)^{i/n}][/math].
Теперь [math]f[/math] — это фронт Парето из [math]n+1[/math] слоя. Предложим, множество решений [math]\{x_1,x_2, \ldots , x_n\}[/math] из [math]n[/math] точек. По принципу Дирихле получается, что хотя бы на одном уровне нет ни одного решения. Это означает, что верхняя граница этого уровня аппроксимируется значением [math]\min ( \frac{A}{a}, \frac{B}{b})^{\frac{1}{n}}[/math]. |
[math]\triangleleft[/math] |
Утверждение (3): |
[math]\forall n \geq \log (\min ( \frac{A}{a}, \frac{B}{b})) / \varepsilon [/math], где [math]\varepsilon \in (0,1)[/math] выполняется:
- [math]\alpha_{opt} \geq 1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math]
- [math]\alpha_{opt} \leq 1 + (1+\varepsilon)\frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math]
|
[math]\triangleright[/math] |
Оба утверждения следуют из теоремы(1).
Для доказательства первого утверждения достаточно заметить, что [math]\forall x \in \mathbb{R}: e^x\geq 1+x [/math].
Второе утверждение следует из того, что [math]\forall x \in [0, \varepsilon]: e^x \leq 1+(1+\varepsilon)x [/math]. |
[math]\triangleleft[/math] |
Следствие: [math]\alpha_{opt} = 1 + \Theta(1/n)[/math].
Индикатор Гиперобъема
Существует много различных индикаторов, с помощью которых численно оценивают качество решений. Но широко используется только один.
Определение: |
Индикатор называется эластичным по Парето(Pareto-compliant), если для любых двух множеств решений [math]A[/math] и [math]B[/math] значение индикатора для [math]A[/math] больше значения индикатора для [math]B[/math] тогда и только тогда, когда [math]A[/math] доминирует [math]B[/math]. |
Дадим определение индикатора гиперобъема[math]\left(HYP\right)[/math].
Определение: |
Пусть дано множество решений [math]\mathrm{X \subseteq \mathbb{R}^d}[/math]. Пусть также множество всех решений усечено некоторой точкой [math]\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}[/math]. Тогда
[math]\mathrm{HYP\left(X\right)=VOL\left( \bigcup\limits_{\left(x_1, x_2, \ldots, x_d \right) \in X} \left[ r_1, x_1\right] \times \left[ r_2, x_2\right] \times \cdots \times \left[ r_d, x_d\right] \right)}[/math], где через [math]VOL(X)[/math] обозначена мера множества [math]X[/math] по Лебегу. |
Например, пусть [math]\mathrm{r = \left(r_1\right)}[/math] и [math]d=1[/math], тогда [math]HYP(X) = \prod \limits_{x_i \in X} (x_i-r_1)[/math].
Утверждение (4): |
Пусть [math]f \in \mathbb{F}, n \in \mathbb{N}[/math], тогда существует, не обязательно единственное, множество решений [math]X \in \mathbb{X}[/math], которое максимизирует значение [math]HYP(X)[/math] на [math]\mathbb{X}[/math]. |
[math]\triangleright[/math] |
[math]X=\{x_1, x_2, \ldots,x_n\}[/math]
Пусть нижняя граница [math]r=(R_x, R_y)[/math].
[math]HYP(X)=\sum\limits_{i = 1}^{n} (x_i-x_{i-1})(f(x_i) - r)[/math], где [math]x_0 = R_x[/math].
Рассмотрим ряд множеств решений [math]\{X^i\}: \lim\limits_{i \rightarrow \infty} (X^i) = X[/math].
[math]\lim\limits_{j \rightarrow \infty} HYP(X^j) = \lim\limits_{i \rightarrow \infty} \sum\limits_{i = 1}^{n} (x_i^j-x_{i-1}^j)(f(x_i^j) - r) =[/math]
[math]= \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(\lim\limits_{i \rightarrow \infty} f(x_i^j) - r) = \sum\limits_{i = 1}^{n} (x_i-x_{i-1})(f(x_i) - r) = HYP(X)[/math]
Получается, что [math]HYP(X)[/math] — верхняя полунепрерывная, следовательно, экстремум [math]HYP[/math] достигается на компакте. |
[math]\triangleleft[/math] |
Определение: |
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X = \{x_1, \ldots, x_n\} \in \mathbb{X}[/math]. Наименьшим вкладом этого множества называется [math]MinCon(X)= \min \limits_{2 \leq i \leq n-1} (x_i-x_{i-1})(f(x_i)- f(x_{i-1}))[/math]. |
Утверждение (5): |
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X = \{x_1, \ldots, x_n\} \in \mathbb{X}[/math], тогда
[math]MinCon(X) \leq \frac{(x_n-x_1)(f(x_1)-f(x_n))}{(n-2)^2}[/math]. |
[math]\triangleright[/math] |
Пусть [math]a_i=x_i-x_{i-1}[/math] [math]\forall i \in [2,n][/math] и [math]b_i=f(x_i)-f(x_{i-1})[/math] [math]\forall i \in [1,n-1][/math].
Подставив в определение(6), получим:
[math]MinCon(X)= \min \limits_{2 \leq i \leq n-1} a_i b_i \Leftrightarrow a_i \geq MinCon(X) / b_i \forall i \in [2, n-1][/math]
[math]\sum \limits_{i=2}^{n-1} MinCon(X) / b_i \leq \sum \limits_{i=2}^{n-1} a_i \leq \sum \limits_{i=2}^{n} a_i = \sum \limits_{i=2}^{n}x_i - \sum \limits_{i=1}^{n-1}x_i=x_n-x_1 [/math]
Тогда [math]MinCon(X) \leq \frac{x_n-x_1}{\sum \limits_{i=2}^{n-1}1/b_i}[/math].
Cреднее гармоническое меньше среднего арифметического, поэтому
[math]MinCon(X) \leq \frac{x_n-x_1}{\sum \limits_{i=2}^{n-1}1/b_i} \leq \frac{(x_n-x_1)\sum \limits_{i=2}^{n-1}b_i}{(n-2)^2} \leq \frac{(x_n-x_1)(f(x_1)-f(x_n))}{(n-2)^2}[/math]. |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math]f \in \mathbb{F}, n \gt 4[/math] и [math]X = \{ x_1, \ldots, x_n \} \in \mathbb{X}[/math]. Тогда
[math]\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Допустим, что существует [math]x[/math], который не аппроксимируется [math]\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}[/math].
Пусть [math]x_i \lt x \lt x_i+1[/math], тогда [math]x \gt \alpha x_i, f(x) \gt \alpha f(x_{i+1})[/math].
Известно, что [math]MinCon(X) \geq (x-x_i)(f(x)-f(x_{i+1}))[/math].
После подстановки получим [math]MinCon(X) \gt (\alpha - 1)^2 x_i f(x_{i+1})[/math] (1).
Применив утверждение(5), получим:
[math]\forall i \in [3, n-1][/math] [math]MinCon(X) \leq (x_i-x_1)(f(x_1)-f(x_i))/(i-2)^2 \leq x_iB/(i-2)^2[/math] (2)
[math]\forall i \in [1, n-3][/math] [math]MinCon(X) \leq (x_n-x_{i+1})(f(x_{i+1})-f(x_n))/(n-i-2)^2 \leq A f(x_{i+1})/(n-i-2)^2[/math] (3)
Таким образом, [math](\alpha - 1)^2 x_i f(x_{i+1}) \lt \min \{\frac{x_iB}{(i-2)^2} ,\frac{A f(x_{i+1})}{(n-i-2)^2}\} \Leftrightarrow[/math] [math]\alpha \lt 1 + \min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}[/math].
Т.к. [math]\frac{\sqrt{x_iB}}{i-2}[/math] монотонно убывает, а [math]\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}[/math] монотонно возрастает, то максимальное значение [math]\min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}[/math] достигается при равенстве обоих членов:
[math]\frac{\sqrt{x_iB}}{i-2} = \frac{\sqrt{A f(x_{i+1})}}{n-i-2}\} \Leftrightarrow i = 2 + \frac{(n-4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}[/math].
Получим верхнюю оценку для [math]\alpha[/math]: [math]\alpha \lt 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}[/math].
Вышесказанное верно для [math]3 \leq i \leq n-3[/math].
Для [math]i = 1, 2[/math] из (1) и (3) следует, что [math]\alpha \lt 1 + \frac{\sqrt{A/a}}{n-i-2} \leq 1 + \frac{\sqrt{A/a}}{n-4}[/math], что невозможно по условию теоремы.
Для [math]i = n-2, n-2[/math] по (1) и (2) [math]\alpha \lt 1 + \frac{ \sqrt{B/b} } {i-2} \leq 1 + \frac {\sqrt {B/b} } {n-4}[/math], что тоже невозможно по условию теоремы. |
[math]\triangleleft[/math] |
Источники
- Friedrich T., Bringmann K. — The Maximum Hypervolume Set Yields Near-optimal Approximation
- Corne D., Knowles J., Watson R. — Reducing Local Optima in Single-Objective Problems by Multi-objectivization
- Friedrich T., Horoba C., Neumann F. — Multiplicative Approximations and the Hypervolume Indicator
- Kunzli S., Zitzle E. — Indicator-Based Selection in Multiobjective Search