Оценка сложности вычисления гиперобъема — различия между версиями
| Строка 1: | Строка 1: | ||
| − | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема| Определение | + | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема| Определение гиперобъема]] |
Утверждается, что точное вычисление значения гиперобъема <tex>S(X)</tex> множества из <tex>n</tex> точек <tex>d</tex>-мерного пространства является [http://en.wikipedia.org/wiki/Sharp-P #P-трудной задачей], однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за | Утверждается, что точное вычисление значения гиперобъема <tex>S(X)</tex> множества из <tex>n</tex> точек <tex>d</tex>-мерного пространства является [http://en.wikipedia.org/wiki/Sharp-P #P-трудной задачей], однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за | ||
Версия 14:57, 19 июня 2012
Утверждается, что точное вычисление значения гиперобъема множества из точек -мерного пространства является #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
- полином от количества параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
| Определение: |
| задача #MON-CNF (Satisfability problem for monotone boolean formulas) — задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где все дизъюнкты |
| Теорема: |
Задача вычисления гиперобъема принадлежит классу #P трудных задач |
| Доказательство: |
|
Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано, что #MON-CNF является #P-трудной, то это докажет теорему. Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для Количество ее удовлетворяющих подстановок равно минус количество удовлетворяющих подстановок ее отрицания поэтому далее будем работать с . Для каждого клоза построим гиперкуб где
например, гиперкубу будет соответствовать клоз а клоз . Заметим, что объединение гиперкубов может быть записано как объединение гиперкубов вида , где . Более того,
удовлетворяет для некоторого удовлетворяет Заметим, что так как удовлетворяет Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P |