Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
||
| Строка 59: | Строка 59: | ||
<tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex> | <tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex> | ||
| − | Так как среднее гармоническое | + | Так как среднее гармоническое не больше среднего арифметического: |
<tex> \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}</tex> | <tex> \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}</tex> | ||
| Строка 72: | Строка 72: | ||
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек. | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек. | ||
|proof= | |proof= | ||
| − | Доказательство производится от противного, принимая предположение, что существует такой <tex> x</tex>, для которого бы | + | Доказательство производится от противного, принимая предположение, что существует такой <tex> x</tex>, для которого бы не выполнялось условие аппроксимации при данном коэффициенте. |
}} | }} | ||
| Строка 83: | Строка 83: | ||
| − | Совместно | + | Совместно теоремы 1 и 2 приводят к следующим следствиям: |
'''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex> | '''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex> | ||
| − | Пусть <tex>f \in \mathbb{F}, n > 4</tex> | + | Пусть <tex>f \in \mathbb{F}, n > 4</tex>, и <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда: |
<tex> \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}</tex> | <tex> \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}</tex> | ||
| Строка 99: | Строка 99: | ||
или <tex>R_x \leq - \sqrt{Aa}/n, R_y \leq - \sqrt{Bb}/n</tex>, | или <tex>R_x \leq - \sqrt{Aa}/n, R_y \leq - \sqrt{Bb}/n</tex>, | ||
| − | + | выполняется следующее неравенство | |
<tex> \alpha _{HYP} \leq 1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, | <tex> \alpha _{HYP} \leq 1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, | ||
| − | то есть | + | то есть |
| − | <tex> \alpha _{HYP} </tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, что и требовалось доказать. | + | |
| + | <tex> \alpha _{HYP} </tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>, | ||
| + | |||
| + | что и требовалось доказать. | ||
=Примечание= | =Примечание= | ||
Версия 16:46, 19 июня 2012
Содержание
Основные определения
| Определение: |
| Множество называется Парето оптимальным, если:
, где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. |
| Определение: |
| Множество решений называется -аппроксимацией функции , если:
Коэффицент аппроксимации функции на равен: аппроксимация Оптимальный коэффицент аппроксимации |
Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Рассмотрим функции вида: , где убывает и . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Множество всех таких функций обозначим через . Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n () и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема () и докажем, что для количества точек они одинаковы, а именно .
Индикатор гиперобъема
| Определение: |
| Пусть дано множество решения . Пусть также множество всех решений усечено некоторой точкой . Тогда:
, где через обозначена мера множества по Лебегу. Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant). |
| Утверждение: |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение на |
| См. [Гиперобъем] |
Нахождение лучшего коэффициента аппроксимации
[Доказательство] ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
| Утверждение: |
Пусть и .
Тогда [MINCON] данного множество решения: |
|
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть - длины сторон соответствующего прямоугольника, тогда: , для любого Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: Преобразуя, получаем искомое. |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" () и "внешних" точек ( или ).
| Теорема: |
Пусть . Любое множество решение достигает мультипликативной аппроксимации всех внутренних точек. |
| Доказательство: |
| Доказательство производится от противного, принимая предположение, что существует такой , для которого бы не выполнялось условие аппроксимации при данном коэффициенте. |
| Теорема: |
Пусть . И является точкой отсчета. Каждое множество решение достигает мультипликативной аппроксимации всех точек с , и достигает мультипликативной аппроксимации всех точек с . |
| Доказательство: |
| Доказательство производится c использованием ранее доказанного утверждения о MINCON. |
Совместно теоремы 1 и 2 приводят к следующим следствиям:
Следствие:
Пусть , и является точкой отсчета. Тогда:
Следствие:
Пусть . И является точкой отсчета. Тогда если
или , выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.
