Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
| Строка 7: | Строка 7: | ||
<math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | <math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | ||
}} | }} | ||
| − | |||
| − | |||
{{Определение | {{Определение | ||
| Строка 17: | Строка 15: | ||
=Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта= | =Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта= | ||
| + | Множество функций вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex> обозначим через <tex>\mathbb{F}</tex>. | ||
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | ||
Версия 19:18, 19 июня 2012
Содержание
Основные определения
| Определение: |
| Множество называется Парето оптимальным, если:
, где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. |
| Определение: |
| Пусть и . Наименьшим вкладом этого множества называется . |
Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Множество функций вида: , где убывает и обозначим через . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n () и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема () и докажем, что для количества точек они одинаковы, а именно .
Индикатор гиперобъема
| Утверждение: |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение гиперобъема () на |
| Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
| Утверждение: |
Пусть и .
Тогда [MINCON] данного множество решения: |
|
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть - длины сторон соответствующего прямоугольника, тогда: , для любого Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: Преобразуя, получаем искомое. |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" () и "внешних" точек ( или ).
| Теорема (1): |
Пусть . Любое множество решение достигает мультипликативной аппроксимации всех внутренних точек. |
| Доказательство: |
| Доказательство производится от противного, принимая предположение, что существует такой , для которого бы не выполнялось условие аппроксимации при данном коэффициенте. |
| Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает мультипликативной аппроксимации всех точек с , и достигает мультипликативной аппроксимации всех точек с . |
| Доказательство: |
| Доказательство производится c использованием ранее доказанного утверждения о MINCON. |
Совместно теорема(1) и теорема(2) приводят к следующим следствиям:
Следствие 1:
Пусть , и является точкой отсчета. Тогда:
Следствие 2:
Пусть . И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
| Утверждение (5): |
Пусть и , тогда
. |
|
Пусть и . Подставив в определение(6), получим:
Тогда . Cреднее гармоническое меньше среднего арифметического, поэтому . |
| Теорема: |
Пусть и . Тогда
. |
| Доказательство: |
|
Допустим, что существует , который не аппроксимируется . Пусть , тогда . Известно, что . После подстановки получим (1). Применив утверждение(5), получим: (2) (3) Таким образом, . Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов: . Получим верхнюю оценку для : . Вышесказанное верно для . Для из (1) и (3) следует, что , что невозможно по условию теоремы. Для по (1) и (2) , что тоже невозможно по условию теоремы. |
Примечание
Конечно, зависимость от и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.
