Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Основные определения) |
(→Основные определения) |
||
| Строка 1: | Строка 1: | ||
=Основные определения= | =Основные определения= | ||
{{Определение | {{Определение | ||
| − | |definition=Множество <tex>X^* \subseteq X</tex> называется Парето оптимальным, если: | + | |definition=Множество <tex>X^* \subseteq \mathbb{X}</tex> называется Парето оптимальным, если: |
| − | <tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset X : x \succ x^*}</tex>, | + | <tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset \mathbb{X : x \succ x^*}</tex>, |
где <tex> x \succ x^* </tex>(<tex>x</tex> доминирует <tex>x^*</tex>)<tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex> | где <tex> x \succ x^* </tex>(<tex>x</tex> доминирует <tex>x^*</tex>)<tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex> | ||
Версия 19:20, 19 июня 2012
Содержание
Основные определения
| Определение: |
| Множество называется Парето оптимальным, если:
, где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. |
| Определение: |
| Пусть и . Наименьшим вкладом этого множества называется . |
Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Множество функций вида: , где убывает и обозначим через . Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n () и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема () и докажем, что для количества точек они одинаковы, а именно .
Индикатор гиперобъема
| Утверждение: |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение гиперобъема () на |
| Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
| Утверждение: |
Пусть и .
Тогда [MINCON] данного множество решения: |
|
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть - длины сторон соответствующего прямоугольника, тогда: , для любого Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: Преобразуя, получаем искомое. |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" () и "внешних" точек ( или ).
| Теорема (1): |
Пусть . Любое множество решение достигает мультипликативной аппроксимации всех внутренних точек. |
| Доказательство: |
| Доказательство производится от противного, принимая предположение, что существует такой , для которого бы не выполнялось условие аппроксимации при данном коэффициенте. |
| Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает мультипликативной аппроксимации всех точек с , и достигает мультипликативной аппроксимации всех точек с . |
| Доказательство: |
| Доказательство производится c использованием ранее доказанного утверждения о MINCON. |
Совместно теорема(1) и теорема(2) приводят к следующим следствиям:
Следствие 1:
Пусть , и является точкой отсчета. Тогда:
Следствие 2:
Пусть . И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
| Утверждение (5): |
Пусть и , тогда
. |
|
Пусть и . Подставив в определение(6), получим:
Тогда . Cреднее гармоническое меньше среднего арифметического, поэтому . |
| Теорема: |
Пусть и . Тогда
. |
| Доказательство: |
|
Допустим, что существует , который не аппроксимируется . Пусть , тогда . Известно, что . После подстановки получим (1). Применив утверждение(5), получим: (2) (3) Таким образом, . Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов: . Получим верхнюю оценку для : . Вышесказанное верно для . Для из (1) и (3) следует, что , что невозможно по условию теоремы. Для по (1) и (2) , что тоже невозможно по условию теоремы. |
Примечание
Конечно, зависимость от и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.
