Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
||
Строка 44: | Строка 44: | ||
|proof= | |proof= | ||
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. | Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. | ||
− | Пусть <tex>a_i, b_i</tex> | + | Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: |
<tex> a_i \geq MINCON(X)/b_i \forall i \in [2, n-1]</tex> | <tex> a_i \geq MINCON(X)/b_i \forall i \in [2, n-1]</tex> |
Версия 19:58, 19 июня 2012
Содержание
Основные определения
Определение: |
Множество , где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | называется Парето оптимальным, если:
Определение: |
Пусть | и . Наименьшим вкладом этого множества называется .
Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Множество функций вида:
, где убывает и обозначим через .Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (
) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ( ) и докажем, что для количества точек они одинаковы, а именно .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема ( ) на .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множество решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек ( или ).Теорема (1): |
Пусть . Любое множество решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение(2), получим: (2) (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.