Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Основные определения) |
|||
Строка 3: | Строка 3: | ||
|definition=Множество <tex>X^* \subseteq \mathbb{X}</tex> называется Парето-оптимальным, если: | |definition=Множество <tex>X^* \subseteq \mathbb{X}</tex> называется Парето-оптимальным, если: | ||
<tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset \mathbb{X} : x \succ x^*}</tex>, | <tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset \mathbb{X} : x \succ x^*}</tex>, | ||
− | где <tex> x \succ x^* </tex>(<tex>x</tex> доминирует <tex>x^*</tex>)<tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex> | + | где <tex> x \succ x^* </tex> (<tex>x</tex> доминирует <tex>x^*</tex>) <tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex> |
<math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | <math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | ||
Строка 10: | Строка 10: | ||
|id=definition6 | |id=definition6 | ||
|about=6 | |about=6 | ||
− | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Наименьшим вкладом этого множества называется <tex>MinCon(X)= \min \limits_{2 \leq i \leq n-1} (x_i-x_{i-1})(f(x_i)- f(x_{i-1}))</tex>. | + | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Наименьшим вкладом этого множества называется <tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>. |
}} | }} | ||
=Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта= | =Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта= | ||
− | Множество функций вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex> обозначим через <tex>\mathbb{F}</tex>. | + | Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>. |
− | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | + | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. |
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | ||
Строка 32: | Строка 32: | ||
==Нахождение лучшего коэффициента аппроксимации== | ==Нахождение лучшего коэффициента аппроксимации== | ||
− | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент аппроксимации| Утверждение(3)]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>. | + | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент аппроксимации| Утверждение(3)]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>. |
==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем== | ==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем== | ||
Строка 41: | Строка 41: | ||
Тогда минимальный вклад данного множество решения: | Тогда минимальный вклад данного множество решения: | ||
− | <tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex> | + | <tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex> |
|proof= | |proof= | ||
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. | Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. | ||
Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | ||
− | <tex> a_i \geq | + | <tex> a_i \geq MinCon(X)/b_i \forall i \in [2, n - 1]</tex> |
Это означает: | Это означает: | ||
− | <tex> \sum\limits_{i=2}^{n-1} | + | <tex> \sum\limits_{i = 2}^{n - 1} MinCon(x)/b_i \leq \sum\limits_{i = 2}^{n - 1} a_i \leq \sum\limits_{i = 2}^{n} a_i = \sum\limits_{i = 2}^{n} x_i - \sum\limits_{i = 1}^{n - 1} x_i = x_n - x_1 </tex> |
и поэтому: | и поэтому: | ||
− | <tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex> | + | <tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i = 2}^{n - 1}1/b_i}</tex> |
Так как среднее гармоническое не больше среднего арифметического: | Так как среднее гармоническое не больше среднего арифметического: | ||
− | <tex>MinCon(X) \leq \frac{x_n-x_1}{\sum \limits_{i=2}^{n-1}1/b_i} \leq \frac{(x_n-x_1)\sum \limits_{i=2}^{n-1}b_i}{(n-2)^2} \leq \frac{(x_n-x_1)(f(x_1)-f(x_n))}{(n-2)^2}</tex> | + | <tex>MinCon(X) \leq \frac{x_n - x_1}{\sum \limits_{i = 2}^{n - 1}1/b_i} \leq \frac{(x_n - x_1)\sum \limits_{i = 2}^{n - 1}b_i}{(n - 2)^2} \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex> |
}} | }} | ||
Строка 67: | Строка 67: | ||
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in \mathbb{X}</tex> достигает <tex>\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> аппроксимации всех внутренних точек. | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in \mathbb{X}</tex> достигает <tex>\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> аппроксимации всех внутренних точек. | ||
|proof= | |proof= | ||
− | Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}</tex>. | + | Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>. |
− | Пусть <tex>x_i < x < x_i+1</tex>, тогда <tex>x > \alpha x_i, f(x) > \alpha f(x_{i+1})</tex>. | + | Пусть <tex>x_i < x < x_i + 1</tex>, тогда <tex>x > \alpha x_i, f(x) > \alpha f(x_{i + 1})</tex>. |
− | Известно, что <tex>MinCon(X) \geq (x-x_i)(f(x)-f(x_{i+1}))</tex>. | + | Известно, что <tex>MinCon(X) \geq (x - x_i)(f(x) - f(x_{i + 1}))</tex>. |
− | После подстановки получим <tex>MinCon(X) > (\alpha - 1)^2 x_i f(x_{i+1})</tex> (1). | + | После подстановки получим <tex>MinCon(X) > (\alpha - 1)^2 x_i f(x_{i + 1})</tex> (1). |
Применив [[#statement2|утверждение(2)]], получим: | Применив [[#statement2|утверждение(2)]], получим: | ||
− | <tex>\forall i \in [3, n-1]</tex> <tex>MinCon(X) \leq (x_i-x_1)(f(x_1)-f(x_i))/(i-2)^2 \leq x_iB/(i-2)^2</tex> (2) | + | <tex>\forall i \in [3, n - 1]</tex> <tex>MinCon(X) \leq (x_i - x_1)(f(x_1) - f(x_i))/(i - 2)^2 \leq x_iB/(i - 2)^2</tex> (2) |
− | <tex>\forall i \in [1, n-3]</tex> <tex>MinCon(X) \leq (x_n-x_{i+1})(f(x_{i+1})-f(x_n))/(n-i-2)^2 \leq A f(x_{i+1})/(n-i-2)^2</tex> (3) | + | <tex>\forall i \in [1, n - 3]</tex> <tex>MinCon(X) \leq (x_n - x_{i + 1})(f(x_{i + 1}) - f(x_n))/(n - i - 2)^2 \leq A f(x_{i + 1})/(n - i - 2)^2</tex> (3) |
− | Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i+1}) < \min \{\frac{x_iB}{(i-2)^2} ,\frac{A f(x_{i+1})}{(n-i-2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex>. | + | Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i + 1}) < \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex>. |
− | Т.к. <tex>\frac{\sqrt{x_iB}}{i-2}</tex> монотонно убывает, а <tex>\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex> монотонно возрастает, то максимальное значение <tex>\min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex> достигается при равенстве обоих членов: | + | Т.к. <tex>\frac{\sqrt{x_iB}}{i - 2}</tex> монотонно убывает, а <tex>\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex> монотонно возрастает, то максимальное значение <tex>\min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex> достигается при равенстве обоих членов: |
− | <tex>\frac{\sqrt{x_iB}}{i-2} = \frac{\sqrt{A f(x_{i+1})}}{n-i-2}\} \Leftrightarrow i = 2 + \frac{(n-4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}</tex>. | + | <tex>\frac{\sqrt{x_iB}}{i - 2} = \frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\} \Leftrightarrow i = 2 + \frac{(n - 4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}</tex>. |
− | Получим верхнюю оценку для <tex>\alpha</tex>: <tex>\alpha < 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}</tex>. | + | Получим верхнюю оценку для <tex>\alpha</tex>: <tex>\alpha < 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>. |
− | Вышесказанное верно для <tex>3 \leq i \leq n-3</tex>. | + | Вышесказанное верно для <tex>3 \leq i \leq n - 3</tex>. |
− | Для <tex>i = 1, 2</tex> из (1) и (3) следует, что <tex>\alpha < 1 + \frac{\sqrt{A/a}}{n-i-2} \leq 1 + \frac{\sqrt{A/a}}{n-4}</tex>, что невозможно по условию теоремы. | + | Для <tex>i = 1, 2</tex> из (1) и (3) следует, что <tex>\alpha < 1 + \frac{\sqrt{A/a}}{n - i - 2} \leq 1 + \frac{\sqrt{A/a}}{n - 4}</tex>, что невозможно по условию теоремы. |
− | Для <tex>i = n-2, n-1</tex> по (1) и (2) <tex>\alpha < 1 + \frac{ \sqrt{B/b} } {i-2} \leq 1 + \frac {\sqrt {B/b} } {n-4}</tex>, что тоже невозможно по условию теоремы. | + | Для <tex>i = n - 2, n - 1</tex> по (1) и (2) <tex>\alpha < 1 + \frac{ \sqrt{B/b} } {i - 2} \leq 1 + \frac {\sqrt {B/b} } {n - 4}</tex>, что тоже невозможно по условию теоремы. |
}} | }} | ||
Строка 133: | Строка 133: | ||
=Примечание= | =Примечание= | ||
− | Конечно, зависимость от <tex> [a,A]</tex> и <tex>[b,B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций. | + | Конечно, зависимость от <tex> [a, A]</tex> и <tex>[b, B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций. |
[[Файл:Untitled.jpg]] | [[Файл:Untitled.jpg]] |
Версия 22:11, 19 июня 2012
Содержание
Основные определения
Определение: |
Множество , где ( доминирует ) - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время. | называется Парето-оптимальным, если:
Определение: |
Пусть | и . Наименьшим вкладом этого множества называется .
Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта
Множество функций вида:
, где убывает и обозначим через .Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (
) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ( ) и докажем, что для количества точек они одинаковы, а именно .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема ( ) на .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множество решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек ( или ).Теорема (1): |
Пусть . Любое множество решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение(2), получим: (2) (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.