Изменения

Перейти к: навигация, поиск
Нет описания правки
|definition=Множество <tex>X^* \subseteq \mathbb{X}</tex> называется Парето-оптимальным, если:
<tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset \mathbb{X} : x \succ x^*}</tex>,
где <tex> x \succ x^* </tex>(<tex>x</tex> доминирует <tex>x^*</tex>)<tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex>
<math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время.
|id=definition6
|about=6
|definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Наименьшим вкладом этого множества называется <tex>MinCon(X)= \min \limits_{2 \leq i \leq n-1} (x_i-x_{i-1})(f(x_i)- f(x_{i-1}))</tex>.
}}
=Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта=
Множество функций вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex> обозначим через <tex>\mathbb{F}</tex>.
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]].
==Нахождение лучшего коэффициента аппроксимации==
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент аппроксимации| Утверждение(3)]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем==
Тогда минимальный вклад данного множество решения:
<tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
|proof=
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями.
Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда:
<tex> a_i \geq MINCONMinCon(X)/b_i \forall i \in [2, n-1]</tex>
Это означает:
<tex> \sum\limits_{i=2}^{n-1} MINCONMinCon(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 </tex>
и поэтому:
<tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex>
Так как среднее гармоническое не больше среднего арифметического:
<tex>MinCon(X) \leq \frac{x_n-x_1}{\sum \limits_{i=2}^{n-1}1/b_i} \leq \frac{(x_n-x_1)\sum \limits_{i=2}^{n-1}b_i}{(n-2)^2} \leq \frac{(x_n-x_1)(f(x_1)-f(x_n))}{(n-2)^2}</tex>
}}
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in \mathbb{X}</tex> достигает <tex>\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> аппроксимации всех внутренних точек.
|proof=
Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}</tex>.Пусть <tex>x_i < x < x_i+1</tex>, тогда <tex>x > \alpha x_i, f(x) > \alpha f(x_{i+1})</tex>.
Известно, что <tex>MinCon(X) \geq (x-x_i)(f(x)-f(x_{i+1}))</tex>.
После подстановки получим <tex>MinCon(X) > (\alpha - 1)^2 x_i f(x_{i+1})</tex> (1).
Применив [[#statement2|утверждение(2)]], получим:
<tex>\forall i \in [3, n-1]</tex> <tex>MinCon(X) \leq (x_i-x_1)(f(x_1)-f(x_i))/(i-2)^2 \leq x_iB/(i-2)^2</tex> (2)
<tex>\forall i \in [1, n-3]</tex> <tex>MinCon(X) \leq (x_n-x_{i+1})(f(x_{i+1})-f(x_n))/(n-i-2)^2 \leq A f(x_{i+1})/(n-i-2)^2</tex> (3)
Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i+1}) < \min \{\frac{x_iB}{(i-2)^2} ,\frac{A f(x_{i+1})}{(n-i-2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex>.
Т.к. <tex>\frac{\sqrt{x_iB}}{i-2}</tex> монотонно убывает, а <tex>\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex> монотонно возрастает, то максимальное значение <tex>\min \{\frac{\sqrt{x_iB}}{i-2} ,\frac{\sqrt{A f(x_{i+1})}}{n-i-2}\}</tex> достигается при равенстве обоих членов:
<tex>\frac{\sqrt{x_iB}}{i-2} = \frac{\sqrt{A f(x_{i+1})}}{n-i-2}\} \Leftrightarrow i = 2 + \frac{(n-4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}</tex>.
Получим верхнюю оценку для <tex>\alpha</tex>: <tex>\alpha < 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}</tex>.
Вышесказанное верно для <tex>3 \leq i \leq n-3</tex>.
Для <tex>i = 1, 2</tex> из (1) и (3) следует, что <tex>\alpha < 1 + \frac{\sqrt{A/a}}{n-i-2} \leq 1 + \frac{\sqrt{A/a}}{n-4}</tex>, что невозможно по условию теоремы.
Для <tex>i = n-2, n-1</tex> по (1) и (2) <tex>\alpha < 1 + \frac{ \sqrt{B/b} } {i-2} \leq 1 + \frac {\sqrt {B/b} } {n-4}</tex>, что тоже невозможно по условию теоремы.
}}
=Примечание=
Конечно, зависимость от <tex> [a,A]</tex> и <tex>[b,B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.
[[Файл:Untitled.jpg]]
Анонимный участник

Навигация