Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
Строка 1: | Строка 1: | ||
− | = | + | =Основные определения= |
− | Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>. | + | {{Определение |
− | + | |id=definition1 | |
+ | |about=1 | ||
+ | |definition=Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>. | ||
+ | }} | ||
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | ||
+ | {{Определение | ||
+ | |id=definition2 | ||
+ | |about=2 | ||
+ | |definition= | ||
+ | Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>. | ||
+ | }} | ||
+ | }} | ||
+ | {{Определение | ||
+ | |id=definition3 | ||
+ | |about=3 | ||
+ | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Вкладом этого множества называется <tex>Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})</tex>. | ||
+ | Минимальным вкладом этого множества называется <tex>Con(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>. | ||
+ | }} | ||
Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. |
Версия 23:56, 19 июня 2012
Содержание
Основные определения
Определение: |
Множество функций вида: | , где убывает и обозначим через .
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Определение: |
Фиксируем | . Для фиксированного отрезка будем называть кортеж - множеством-решением. И множество таких решений будем обозначать через .
}}
Определение: |
Пусть | и . Вкладом этого множества называется . Минимальным вкладом этого множества называется .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (
) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ( ) и докажем, что для количества точек они одинаковы, а именно .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема ( ) на .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множество решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек ( или ).Теорема (1): |
Пусть . Любое множество решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение(2), получим: (2) (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.