Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
| Строка 1: | Строка 1: | ||
| − | = | + | =Основные определения= |
| − | Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>. | + | {{Определение |
| − | + | |id=definition1 | |
| + | |about=1 | ||
| + | |definition=Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>. | ||
| + | }} | ||
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>. | ||
| + | {{Определение | ||
| + | |id=definition2 | ||
| + | |about=2 | ||
| + | |definition= | ||
| + | Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>. | ||
| + | }} | ||
| + | }} | ||
| + | {{Определение | ||
| + | |id=definition3 | ||
| + | |about=3 | ||
| + | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Вкладом этого множества называется <tex>Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})</tex>. | ||
| + | Минимальным вкладом этого множества называется <tex>Con(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>. | ||
| + | }} | ||
Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | ||
Версия 23:56, 19 июня 2012
Содержание
Основные определения
| Определение: |
| Множество функций вида: , где убывает и обозначим через . |
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
| Определение: |
| Фиксируем . Для фиксированного отрезка будем называть кортеж - множеством-решением. И множество таких решений будем обозначать через . |
}}
| Определение: |
| Пусть и . Вкладом этого множества называется . Минимальным вкладом этого множества называется . |
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n () и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема () и докажем, что для количества точек они одинаковы, а именно .
Индикатор гиперобъема
| Утверждение (1): |
Пусть .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение гиперобъема () на |
| Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
| Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множество решения: |
|
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" () и "внешних" точек ( или ).
| Теорема (1): |
Пусть . Любое множество решение достигает аппроксимации всех внутренних точек. |
| Доказательство: |
|
Допустим, что существует , который не аппроксимируется . Пусть , тогда . Известно, что . После подстановки получим (1). Применив утверждение(2), получим: (2) (3) Таким образом, . Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов: . Получим верхнюю оценку для : . Вышесказанное верно для . Для из (1) и (3) следует, что , что невозможно по условию теоремы. Для по (1) и (2) , что тоже невозможно по условию теоремы. |
| Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
| Доказательство: |
| Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть , и является точкой отсчета. Тогда:
Следствие 2:
Пусть . И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.
