Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 11: Строка 11:
 
|definition=
 
|definition=
 
Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>.
 
Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>.
}}
 
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 17: Строка 16:
 
|about=3
 
|about=3
 
|definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Вкладом этого множества называется <tex>Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})</tex>.
 
|definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = \{x_1, \ldots, x_n\} \in \mathbb{X}</tex>. Вкладом этого множества называется <tex>Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})</tex>.
Минимальным вкладом этого множества называется <tex>Con(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>.
+
 
 +
Минимальным вкладом этого множества называется <tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>.
 
}}
 
}}
  

Версия 23:57, 19 июня 2012

Основные определения

Определение:
Множество функций вида: [math]f:[a, A] \rightarrow [b, B][/math], где [math]f[/math] убывает и [math]f(a) = B, f(A) = b[/math] обозначим через [math]\mathbb{F}[/math].

Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков [math] [a, A][/math] и [math][b, B] [/math]. Так как для фиксированных констант [math] \mu , \nu [/math] функция [math] f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ][/math] и [math] f^*= \nu f(x/ \mu ) [/math] имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений [math]A/a[/math] и [math]B/b[/math].

Определение:
Фиксируем [math]n[/math]. Для фиксированного отрезка [math] [a, A][/math] будем называть кортеж [math] X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A[/math] - множеством-решением. И множество таких решений будем обозначать через [math]\mathbb{X}[/math].


Определение:
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X = \{x_1, \ldots, x_n\} \in \mathbb{X}[/math]. Вкладом этого множества называется [math]Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})[/math]. Минимальным вкладом этого множества называется [math]MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))[/math].


Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.

Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n ([math] \alpha _{OPT}[/math]) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ([math] \alpha _{HYP}[/math]) и докажем, что для количества точек [math] n [/math] они одинаковы, а именно [math] 1 + \Theta ( \frac{1}{n}) [/math].

Индикатор гиперобъема

Утверждение (1):
Пусть [math]f \in \mathbb{F}, n \in \mathbb{N}[/math]. Тогда существует, не обязятельно единственное, множество решения [math]X \in \mathbb{X}[/math], которое максимизирует значение гиперобъема ([math]HYP(X)[/math]) на [math]\mathbb{X}[/math]
[math]\triangleright[/math]
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем
[math]\triangleleft[/math]

Нахождение лучшего коэффициента аппроксимации

Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: [math]1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем

Утверждение (2):
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X= \{x_1, x_2, \ldots, x_d \} \in X [/math].

Тогда минимальный вклад данного множество решения:

[math]MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}[/math]
[math]\triangleright[/math]

Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. Пусть [math]a_i, b_i [/math] — длины сторон соответствующего прямоугольника, тогда:

[math] a_i \geq MinCon(X)/b_i \forall i \in [2, n - 1][/math]

Это означает:

[math] \sum\limits_{i = 2}^{n - 1} MinCon(x)/b_i \leq \sum\limits_{i = 2}^{n - 1} a_i \leq \sum\limits_{i = 2}^{n} a_i = \sum\limits_{i = 2}^{n} x_i - \sum\limits_{i = 1}^{n - 1} x_i = x_n - x_1 [/math]

и поэтому: [math]MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i = 2}^{n - 1}1/b_i}[/math]

Так как среднее гармоническое не больше среднего арифметического:

[math]MinCon(X) \leq \frac{x_n - x_1}{\sum \limits_{i = 2}^{n - 1}1/b_i} \leq \frac{(x_n - x_1)\sum \limits_{i = 2}^{n - 1}b_i}{(n - 2)^2} \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}[/math]
[math]\triangleleft[/math]

Далее необходимо посчитать коэффициент аппроксимации для "внутренних" ([math]x \in [x_1, x_n][/math]) и "внешних" точек ([math]x \lt x_1[/math] или [math]x \gt x_n[/math]).

Теорема (1):
Пусть [math]f \in \mathbb{F}, n \gt 4[/math]. Любое множество решение [math]\{x_1, x_2, \ldots, x_d\} \in \mathbb{X}[/math] достигает [math]\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}[/math] аппроксимации всех внутренних точек.
Доказательство:
[math]\triangleright[/math]

Допустим, что существует [math]x[/math], который не аппроксимируется [math]\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}[/math]. Пусть [math]x_i \lt x \lt x_i + 1[/math], тогда [math]x \gt \alpha x_i, f(x) \gt \alpha f(x_{i + 1})[/math].

Известно, что [math]MinCon(X) \geq (x - x_i)(f(x) - f(x_{i + 1}))[/math].

После подстановки получим [math]MinCon(X) \gt (\alpha - 1)^2 x_i f(x_{i + 1})[/math] (1).

Применив утверждение(2), получим:

[math]\forall i \in [3, n - 1][/math] [math]MinCon(X) \leq (x_i - x_1)(f(x_1) - f(x_i))/(i - 2)^2 \leq x_iB/(i - 2)^2[/math] (2)

[math]\forall i \in [1, n - 3][/math] [math]MinCon(X) \leq (x_n - x_{i + 1})(f(x_{i + 1}) - f(x_n))/(n - i - 2)^2 \leq A f(x_{i + 1})/(n - i - 2)^2[/math] (3)

Таким образом, [math](\alpha - 1)^2 x_i f(x_{i + 1}) \lt \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow[/math] [math]\alpha \lt 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}[/math].

Т.к. [math]\frac{\sqrt{x_iB}}{i - 2}[/math] монотонно убывает, а [math]\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}[/math] монотонно возрастает, то максимальное значение [math]\min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}[/math] достигается при равенстве обоих членов:

[math]\frac{\sqrt{x_iB}}{i - 2} = \frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\} \Leftrightarrow i = 2 + \frac{(n - 4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}[/math].

Получим верхнюю оценку для [math]\alpha[/math]: [math]\alpha \lt 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}[/math].

Вышесказанное верно для [math]3 \leq i \leq n - 3[/math].

Для [math]i = 1, 2[/math] из (1) и (3) следует, что [math]\alpha \lt 1 + \frac{\sqrt{A/a}}{n - i - 2} \leq 1 + \frac{\sqrt{A/a}}{n - 4}[/math], что невозможно по условию теоремы.

Для [math]i = n - 2, n - 1[/math] по (1) и (2) [math]\alpha \lt 1 + \frac{ \sqrt{B/b} } {i - 2} \leq 1 + \frac {\sqrt {B/b} } {n - 4}[/math], что тоже невозможно по условию теоремы.
[math]\triangleleft[/math]
Теорема (2):
Пусть [math]f \in \mathbb{F}, n \gt 3[/math]. И [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Каждое множество решение [math]\{x_1, x_2, \ldots, x_d\} \in \mathbb{X} [/math] достигает [math]1 + \frac{A}{(a - R_x)(n - 2)^2}[/math] аппроксимации всех точек с [math]x \lt x_1[/math] и [math]1 + \frac{B}{(b - R_y)(n - 2)^2}[/math] аппроксимации всех точек с [math]x \gt x_n[/math].
Доказательство:
[math]\triangleright[/math]
Доказательство производится c использованием ранее доказанного утверждения о [math]MinCon[/math].
[math]\triangleleft[/math]


Из теоремы(1) и теоремы(2) выводятся следующие следствия:

Следствие 1: [math]\alpha_{opt} = 1 + \Theta(1/n)[/math]

Пусть [math]f \in \mathbb{F}, n \gt 4[/math], и [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Тогда:

[math] \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}[/math]


Следствие 2: [math]\alpha_{opt} = 1 + \Theta(1/n)[/math]

Пусть [math]f \in \mathbb{F}, n \gt 4[/math]. И [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Тогда если

[math] n \geq 2 + \max{\sqrt{A/a}}{\sqrt{B/b}}[/math]

или

[math]R_x \leq - \sqrt{Aa}/n, R_y \leq - \sqrt{Bb}/n[/math], выполняется следующее неравенство

[math] \alpha _{HYP} \leq 1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math],

то есть

[math] \alpha _{HYP} [/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math],

что и требовалось доказать.

Примечание

Конечно, зависимость от [math] [a, A][/math] и [math][b, B] [/math] в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.

Untitled.jpg

Источники

  1. Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation