Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Основные определения) |
|||
Строка 10: | Строка 10: | ||
|about=2 | |about=2 | ||
|definition= | |definition= | ||
− | Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n), a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>. | + | Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n)</tex>, такой что <tex>a \leq x_1 \leq \ldots \leq x_n \leq A</tex> - множеством-решением. И множество таких решений будем обозначать через <tex>\mathbb{X}</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|id=definition3 | |id=definition3 | ||
|about=3 | |about=3 | ||
− | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = | + | |definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = (x_1, \ldots, x_n) \in \mathbb{X}</tex>. Вкладом этого множества-решения называется <tex>Con(X) = x_i-x_{i - 1})(f(x_i) - f(x_{i - 1})</tex>. |
Минимальным вкладом этого множества называется <tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>. | Минимальным вкладом этого множества называется <tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i - 1}))</tex>. | ||
}} | }} | ||
− | Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество решение, максимизирующее индикатор гиперобъема]]. | + | Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество-решение, максимизирующее индикатор гиперобъема]]. |
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>. | Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>. | ||
Строка 40: | Строка 40: | ||
|about=2 | |about=2 | ||
|id=statement2 | |id=statement2 | ||
− | |statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= | + | |statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= (x_1, x_2, \ldots, x_d ) \in X </tex>. |
− | Тогда минимальный вклад данного | + | Тогда минимальный вклад данного множества-решения: |
<tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex> | <tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex> | ||
|proof= | |proof= | ||
− | Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями. | + | Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества-решения и их значениями. |
Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | ||
Строка 67: | Строка 67: | ||
|about=1 | |about=1 | ||
|id=theorem1 | |id=theorem1 | ||
− | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex> | + | |statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество-решение <tex>(x_1, x_2, \ldots, x_d) \in \mathbb{X}</tex> достигает <tex>\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> аппроксимации всех внутренних точек. |
|proof= | |proof= | ||
Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>. | Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>. | ||
Строка 100: | Строка 100: | ||
|about=2 | |about=2 | ||
|id=theorem2 | |id=theorem2 | ||
− | |statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex> | + | |statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>(x_1, x_2, \ldots, x_d) \in \mathbb{X} </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> аппроксимации всех точек с <tex>x < x_1</tex> и <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> аппроксимации всех точек с <tex>x > x_n</tex>. |
|proof= | |proof= | ||
Доказательство производится c использованием [[#statement2|ранее доказанного утверждения]] о <tex>MinCon</tex>. | Доказательство производится c использованием [[#statement2|ранее доказанного утверждения]] о <tex>MinCon</tex>. |
Версия 00:01, 20 июня 2012
Содержание
Основные определения
Определение: |
Множество функций вида: | , где убывает и обозначим через .
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Определение: |
Фиксируем | . Для фиксированного отрезка будем называть кортеж , такой что - множеством-решением. И множество таких решений будем обозначать через .
Определение: |
Пусть | и . Вкладом этого множества-решения называется . Минимальным вкладом этого множества называется .
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество-решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (
) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ( ) и докажем, что для количества точек они одинаковы, а именно .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема ( ) на .
Тогда существует, не обязятельно единственное, множество решения , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем |
Нахождение лучшего коэффициента аппроксимации
Утверждение(3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множества-решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества-решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек ( или ).Теорема (1): |
Пусть . Любое множество-решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение(2), получим: (2) (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.