Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
м (→Индикатор гиперобъема) |
м (→Нахождение лучшего коэффициента аппроксимации) |
||
Строка 39: | Строка 39: | ||
==Нахождение лучшего коэффициента аппроксимации== | ==Нахождение лучшего коэффициента аппроксимации== | ||
− | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент аппроксимации| Утверждение(3)]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>. | + | [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент аппроксимации| Утверждение (3)]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>. |
==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем== | ==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем== |
Версия 00:31, 20 июня 2012
Содержание
Основные определения
Определение: |
Множество функций вида: | , где убывает и обозначим через .
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Определение: |
Фиксируем | . Для фиксированного отрезка будем называть кортеж , такой что — множеством-решением. Множество таких решений будем обозначать .
Определение: |
Пусть . Минимальным вкладом в гиперобъем множества-решения называется . | и . Тогда вкладом -й точки в гиперобъем решения называется
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество-решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из
точек и верхнюю границу коэффициента аппроксимации для множества из точек, максимизирующего значение индикатора гиперобъема , и докажем, что для количества точек они одинаковы, а именно равны .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема на .
Тогда существует, не обязятельно единственное, множество-решение , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем
Нахождение лучшего коэффициента аппроксимации
Утверждение (3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множества-решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества-решения и их значениями. Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (
) и "внешних" точек ( или ).Теорема (1): |
Пусть . Любое множество-решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение(2), получим: (2) (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы(1) и теоремы(2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.