Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
(→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
м (→Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем) |
||
Строка 51: | Строка 51: | ||
|proof= | |proof= | ||
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже | Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже | ||
+ | |||
[[Файл:Untitled2.jpg]] | [[Файл:Untitled2.jpg]] | ||
+ | |||
Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда: | ||
− | <tex> a_i \geq MinCon(X)/b_i | + | <tex> a_i \geq MinCon(X)/b_i для всех i \in [2, n - 1]</tex> |
Это означает: | Это означает: | ||
Строка 68: | Строка 70: | ||
}} | }} | ||
− | Далее необходимо посчитать коэффициент аппроксимации для | + | Далее необходимо посчитать коэффициент аппроксимации для «внутренних» (<tex>x \in [x_1, x_n]</tex>) и «внешних» точек (<tex>x < x_1</tex> или <tex>x > x_n</tex>). |
{{Теорема | {{Теорема | ||
Строка 84: | Строка 86: | ||
Применив [[#statement2|утверждение (2)]], получим: | Применив [[#statement2|утверждение (2)]], получим: | ||
− | + | <tex>MinCon(X) \leq (x_i - x_1)(f(x_1) - f(x_i))/(i - 2)^2 \leq x_iB/(i - 2)^2</tex> для всех <tex>i \in [3, n - 1]</tex> (2) | |
− | + | <tex>MinCon(X) \leq (x_n - x_{i + 1})(f(x_{i + 1}) - f(x_n))/(n - i - 2)^2 \leq A f(x_{i + 1})/(n - i - 2)^2</tex> для всех <tex>i \in [1, n - 3]</tex> (3) | |
Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i + 1}) < \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex>. | Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i + 1}) < \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex>. |
Версия 00:48, 20 июня 2012
Содержание
Основные определения
Определение: |
Множество функций вида: | , где убывает и обозначим через .
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Определение: |
Фиксируем | . Для фиксированного отрезка будем называть кортеж , такой что — множеством-решением. Множество таких решений будем обозначать .
Определение: |
Пусть . Минимальным вкладом в гиперобъем множества-решения называется . | и . Тогда вкладом -й точки в гиперобъем решения называется
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество-решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из
точек и верхнюю границу коэффициента аппроксимации для множества из точек, максимизирующего значение индикатора гиперобъема , и докажем, что для количества точек они одинаковы, а именно равны .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема на .
Тогда существует, не обязятельно единственное, множество-решение , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем
Нахождение лучшего коэффициента аппроксимации
Утверждение (3) ограничивает значение оптимального коэффицента апроксимации сверху: = .
Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множества-решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже Пусть — длины сторон соответствующего прямоугольника, тогда:
Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для «внутренних» (
) и «внешних» точек ( или ).Теорема (1): |
Пусть . Любое множество-решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение (2), получим: для всех (2) для всех (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы (1) и теоремы (2) выводятся следующие следствия:
Следствие 1:
Пусть
, и является точкой отсчета. Тогда:
Следствие 2:
Пусть
. И является точкой отсчета. Тогда если
или
, выполняется следующее неравенство
= ,
то есть
= ,
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для определенного класса функций.