Black-box Complexity. Примеры нереалистичных оценок Black-box Complexity — различия между версиями
(→Неограниченная Black-box модель) |
|||
Строка 4: | Строка 4: | ||
'''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> — попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма — количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref name="bbox"/><ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>. | '''Black-box Complexity''' <ref name="bbox">[http://dl.acm.org/citation.cfm?doid=2001576.2001851 Doerr B., Kötzing T., Winzen C. Too fast unbiased black-box algorithms]</ref> — попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, ''black-box'' сложность алгоритма — количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки ''black-box'' сложности, например, полиномиальную сложность для [[Примеры_NP-полных_языков._Теорема_Кука|<tex>\mathrm{NP}</tex>-полной]] задачи поиска максимальной клики <ref name="bbox"/><ref>[http://en.wikipedia.org/wiki/Clique_problem Clique problem]</ref>. | ||
− | По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только ''' | + | По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только '''беспристрастные''' (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) '''вариативные операторы'''. Также было введено понятие '''арности''' — <tex>k</tex>-арный беспристрастный ''black-box'' алгоритм использует только те операторы, которые принимают не более чем <tex>k</tex> аргументов. Для некоторых классов задач такой подход к опеределению ''black-box'' сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью <tex>1</tex> называют '''мутационными'''. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить нереалистично маленькую оценку ''black-box'' сложности. |
− | == Неограниченная и | + | == Неограниченная и беспристрастная Black-box модели == |
=== Обозначения === | === Обозначения === | ||
*<tex>\mathbb{N}</tex> — положительные целые числа; | *<tex>\mathbb{N}</tex> — положительные целые числа; | ||
Строка 45: | Строка 45: | ||
Пусть <tex>\mathcal{F}</tex> — класс псевдо-булевых функций. Сложностью алгоритма <tex>A</tex> над <tex>\mathcal{F}</tex> называется максимальное предположительное время работы <tex>A</tex> на функции <tex>f \in \mathcal{F}</tex> (в худшем случае). Сложностью <tex>\mathcal{F}</tex> относительно класса алгоритмов <tex>\mathcal{A}</tex> называется минимальная сложность среди всех <tex>A \in \mathcal{A}</tex> над <tex>\mathcal{F}</tex>. Неограниченной ''black-box'' сложностью <tex>\mathcal{F}</tex> называется сложность <tex>\mathcal{F}</tex> относительно класса неограниченных ''black-box'' алгоритмов. | Пусть <tex>\mathcal{F}</tex> — класс псевдо-булевых функций. Сложностью алгоритма <tex>A</tex> над <tex>\mathcal{F}</tex> называется максимальное предположительное время работы <tex>A</tex> на функции <tex>f \in \mathcal{F}</tex> (в худшем случае). Сложностью <tex>\mathcal{F}</tex> относительно класса алгоритмов <tex>\mathcal{A}</tex> называется минимальная сложность среди всех <tex>A \in \mathcal{A}</tex> над <tex>\mathcal{F}</tex>. Неограниченной ''black-box'' сложностью <tex>\mathcal{F}</tex> называется сложность <tex>\mathcal{F}</tex> относительно класса неограниченных ''black-box'' алгоритмов. | ||
− | === | + | === Беспристрастная Black-box модель === |
Класс неограниченных ''black-box'' алгоритмов слишком мощный. Например для любого функционального класса <tex>\mathcal{F} = \{f\}</tex> неограниченная ''black-box'' сложность равна единице — алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию. | Класс неограниченных ''black-box'' алгоритмов слишком мощный. Например для любого функционального класса <tex>\mathcal{F} = \{f\}</tex> неограниченная ''black-box'' сложность равна единице — алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию. | ||
− | Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только '' | + | Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только ''беспристрастные вариативные операторы''. |
{{Определение | {{Определение | ||
− | |definition=<tex>\forall k \in \mathbb{N}, k</tex>-арным | + | |definition=<tex>\forall k \in \mathbb{N}, k</tex>-арным беспристрастным распределением <tex>(D(\cdot|y^{(1)},\ldots,y^{(k)}))_{y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n}</tex> называется семейство вероятностных распределений над <tex>\{0,1\}^n</tex> таких, что для любых <tex>y^{(1)},\ldots,y^{(k)} \in \{0,1\}^n</tex> выполняются следующие условия: |
*<tex>\forall x, z \in \{0,1\}^n</tex>: | *<tex>\forall x, z \in \{0,1\}^n</tex>: | ||
:<tex>D(x|y^{(1)},\ldots,y^{(k)}) = D(x \bigoplus z|y^{(1)} \bigoplus z,\ldots,y^{(k)} \bigoplus z)</tex>; | :<tex>D(x|y^{(1)},\ldots,y^{(k)}) = D(x \bigoplus z|y^{(1)} \bigoplus z,\ldots,y^{(k)} \bigoplus z)</tex>; | ||
Строка 58: | Строка 58: | ||
}} | }} | ||
− | Первое условие называется <tex>\bigoplus</tex>-инвариантностью, второе — перестановочной инвариантностью. Оператор, выбранный из <tex>k</tex>-арного | + | Первое условие называется <tex>\bigoplus</tex>-инвариантностью, второе — перестановочной инвариантностью. Оператор, выбранный из <tex>k</tex>-арного беспристрастного распределения, называется '''<tex>k</tex>-арным беспристрастным вариативным оператором'''. |
− | Схема <tex>k</tex>-арного | + | Схема <tex>k</tex>-арного беспристрастного ''black-box'' алгоритма: |
'''Инициализация:''' выбрать <tex>x^{(0)}</tex> равновероятно из <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>. | '''Инициализация:''' выбрать <tex>x^{(0)}</tex> равновероятно из <tex>\{0,1\}^n</tex>. Запросить <tex>f(x^{(0)})</tex>. | ||
'''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do''' | '''Оптимизация:''' '''for''' <tex>t = 1, 2, 3, \ldots </tex> '''until''' ''условие остановки'' '''do''' | ||
− | Исходя из <tex>(f(x^{(0)}), \ldots, f(x^{(t-1)}))</tex>, выбрать <tex>k</tex> индексов <tex>i_1, \ldots, i_k \in [0..t-1]</tex> и <tex>k</tex>-арное | + | Исходя из <tex>(f(x^{(0)}), \ldots, f(x^{(t-1)}))</tex>, выбрать <tex>k</tex> индексов <tex>i_1, \ldots, i_k \in [0..t-1]</tex> и <tex>k</tex>-арное беспристрастное распределение <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex>. |
Выбрать <tex>x^{(t)}</tex> согласно <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex> и запросить <tex>f(x^{(t)})</tex>. | Выбрать <tex>x^{(t)}</tex> согласно <tex>D(\cdot|x^{(i_1)},\ldots,x^{(i_k)})</tex> и запросить <tex>f(x^{(t)})</tex>. | ||
Строка 82: | Строка 82: | ||
}} | }} | ||
− | Далее будет показано, что для любого константного <tex>k</tex> можно с высокой вероятностью решить проблему <tex>OneMax</tex> <ref>[http://tracer.lcc.uma.es/problems/onemax/onemax.html OneMax problem]</ref> за малое количество ''black-box'' обращений к <tex>Jump_k</tex>. С помощью этого утверждения можно показать, что для любой константы <tex>k</tex> | + | Далее будет показано, что для любого константного <tex>k</tex> можно с высокой вероятностью решить проблему <tex>OneMax</tex> <ref>[http://tracer.lcc.uma.es/problems/onemax/onemax.html OneMax problem]</ref> за малое количество ''black-box'' обращений к <tex>Jump_k</tex>. С помощью этого утверждения можно показать, что для любой константы <tex>k</tex> беспристрастная ''black-box'' сложность для функции <tex>Jump_k</tex> нереалистично мала. |
{{Лемма | {{Лемма | ||
|id=lemma3 | |id=lemma3 | ||
− | |statement=<tex>\forall k,c</tex> существует унарная | + | |statement=<tex>\forall k,c</tex> существует унарная беспристрастная функция <tex>s</tex>, использующая <tex>c+1</tex> запросов к <tex>Jump_k</tex> такая, что для всех битовых строк <tex>x</tex>, <tex>s(x) = OneMax(x)</tex> с вероятностью <tex>1 - O(n^{-c})</tex>. |
− | |proof=Используется унарный | + | |proof=Используется унарный беспристрастный вариативный оператор <tex>flip_k</tex>, который равновероятно выбирает строку из <tex>k</tex>-окрестности для аргумента (битовую строку, которая отличается в <tex>k</tex> позициях). Ниже предлагается функция <tex>s</tex>, которая использует <tex>Jump_k</tex> для аппроксимации <tex>OneMax</tex>. Функция выбирает <tex>c</tex> битовых строк в <tex>k</tex>-окрестности <tex>x</tex>. Если <tex>|x|_1 \geq n-k</tex>, то есть вероятность того, что хотя бы раз в <tex>x</tex> будут заменены только единицы, что приведет к тому, что <tex>Jump_k = |x|_1 - k</tex>. Так как больше никакая строка из выборки не будет иметь меньшее <tex>Jump_k</tex> значение, то добавление <tex>k</tex> к минимальному ненулевому значению <tex>Jump_k</tex> других строк из выборки приведет к нужному результату — функция вернет количество единиц в строке <tex>x</tex>. Случай, когда <tex>|x|_1 \leq k</tex>, аналогичен. |
Понятно, что функция корректна при всех <tex>x</tex>, таких, что <tex>k < |x|_1 < n-k</tex>. Остальные два случая симметричны, поэтому пусть <tex>|x|_1 \geq n-k</tex>. Очевидно, что результат функции корректен тогда и только тогда, когда хотя бы в одной из <tex>c</tex> строк были заменены только единицы. Требуется вычислить вероятность <tex>p</tex> этого события. Итеративно выбираются <tex>k</tex> бит для замены, поэтому после <tex>i</tex> итераций имеется как минимум <tex>n-k-i</tex> позиций с единицей из <tex>n-i</tex> невыбранных позиций. Отсюда, с использованием неравенства Бернулли <ref>[http://en.wikipedia.org/wiki/Bernoulli%27s_inequality Bernoulli's inequality]</ref>, получается граница на вероятность выбора <tex>k</tex> единиц: | Понятно, что функция корректна при всех <tex>x</tex>, таких, что <tex>k < |x|_1 < n-k</tex>. Остальные два случая симметричны, поэтому пусть <tex>|x|_1 \geq n-k</tex>. Очевидно, что результат функции корректен тогда и только тогда, когда хотя бы в одной из <tex>c</tex> строк были заменены только единицы. Требуется вычислить вероятность <tex>p</tex> этого события. Итеративно выбираются <tex>k</tex> бит для замены, поэтому после <tex>i</tex> итераций имеется как минимум <tex>n-k-i</tex> позиций с единицей из <tex>n-i</tex> невыбранных позиций. Отсюда, с использованием неравенства Бернулли <ref>[http://en.wikipedia.org/wiki/Bernoulli%27s_inequality Bernoulli's inequality]</ref>, получается граница на вероятность выбора <tex>k</tex> единиц: | ||
Строка 107: | Строка 107: | ||
}} | }} | ||
− | Теперь, используя [[#lemma3|предыдущую лемму]], можно найти | + | Теперь, используя [[#lemma3|предыдущую лемму]], можно найти беспристрастную ''black-box'' сложность для функции <tex>Jump_k</tex> при константном <tex>k</tex>. |
{{Теорема | {{Теорема | ||
|id=th4 | |id=th4 | ||
− | |statement=Для константы <tex>k</tex> | + | |statement=Для константы <tex>k</tex> беспристрастная ''black-box'' сложность <tex>Jump_k</tex>: |
*<tex>O(n \log(n))</tex> для унарных вариативных операторов; | *<tex>O(n \log(n))</tex> для унарных вариативных операторов; | ||
Строка 137: | Строка 137: | ||
Далее <tex>Partition_{\neq}</tex> — подкласс задачи <tex>Partition</tex> с заданными различными весами. | Далее <tex>Partition_{\neq}</tex> — подкласс задачи <tex>Partition</tex> с заданными различными весами. | ||
− | Далее предлагаются две различные функции приспособленности и показывается, что в обоих случаях может быть достигнута полиномиальная | + | Далее предлагаются две различные функции приспособленности и показывается, что в обоих случаях может быть достигнута полиномиальная беспристрастная ''black-box'' сложность. Показывается, что унарная беспристрастная ''black-box'' сложность для задачи <tex>Partition_{\neq}</tex> равна <tex>O(n \log(n))</tex>. |
=== Знаковая функция приспособленности === | === Знаковая функция приспособленности === | ||
Строка 152: | Строка 152: | ||
{{Теорема | {{Теорема | ||
|id=th6 | |id=th6 | ||
− | |statement=Унарная | + | |statement=Унарная беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно функции приспособленности <tex>f_{\mathcal{I}}</tex> равна <tex>O(n \log(n))</tex>, где <tex>n := |\mathcal{I}|</tex>. |
|proof=Для доказательства теоретмы строится алгоритм с применением двух вариативных операторов: | |proof=Для доказательства теоретмы строится алгоритм с применением двух вариативных операторов: | ||
:*<tex>uniform()</tex> — выбирает случайную битовую строку <tex>x \in \{0,1\}^n</tex>; | :*<tex>uniform()</tex> — выбирает случайную битовую строку <tex>x \in \{0,1\}^n</tex>; | ||
Строка 181: | Строка 181: | ||
18 <tex>z \leftarrow y</tex>, <tex>\mathcal{M} \leftarrow \mathcal{M} \backslash \{w\}</tex>; | 18 <tex>z \leftarrow y</tex>, <tex>\mathcal{M} \leftarrow \mathcal{M} \backslash \{w\}</tex>; | ||
− | За <tex>(1+o(1))n \log(n)</tex> итераций определяются веса всех элементов <tex>\mathcal{I}</tex>. Зная веса элементов, в оффлайне перебором находится оптимальное решение задачи, после чего это решение необходимо восстановить с помощью вариативного <tex>1</tex>-арного оператора. Для этого построено множество <tex>\mathcal{M}</tex> — множество элементов, которые необходимо переместить для получения оптимального решения. В итоге, | + | За <tex>(1+o(1))n \log(n)</tex> итераций определяются веса всех элементов <tex>\mathcal{I}</tex>. Зная веса элементов, в оффлайне перебором находится оптимальное решение задачи, после чего это решение необходимо восстановить с помощью вариативного <tex>1</tex>-арного оператора. Для этого построено множество <tex>\mathcal{M}</tex> — множество элементов, которые необходимо переместить для получения оптимального решения. В итоге, беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно заданной функции приспособленности равна <tex>O(n \log(n))</tex>. Полное доказательство приведено в работе <ref name="bbox"/>. |
}} | }} | ||
Строка 190: | Строка 190: | ||
{{Теорема | {{Теорема | ||
|id=th8 | |id=th8 | ||
− | |statement=Унарная | + | |statement=Унарная беспристрастная ''black-box'' сложность задачи <tex>Partition_{\neq}</tex> относительно функции приспособленности <tex>|f_{\mathcal{I}}|</tex> равна <tex>O(n \log(n))</tex>. Где <tex>n := |\mathcal{I}|</tex>. |
|proof=Для краткости полагается: | |proof=Для краткости полагается: | ||
:*<tex>f := |f_{\mathcal{I}}|</tex>; | :*<tex>f := |f_{\mathcal{I}}|</tex>; |
Версия 12:54, 20 июня 2012
Содержание
Введение в Black-box Complexity
Целью теории сложности является определение вычислительной трудности алгоритмов. Классическая теория сложности предполагает, что алгоритму полностью известна структура решаемой задачи. В случае эволюционных алгоритмов, алгоритм обладает информацией только о качестве (значении функции приспособленности) получаемого им решения, по этой причине утверждения классической теории сложности здесь мало применимы.
Black-box Complexity [1] — попытка построить теорию сложности для эволюционных алгоритмов. Вкратце, black-box сложность алгоритма — количество вычислений функции приспособленности, необходимое для получения решения. Такое определение позволяет получить нереалистично низкие оценки black-box сложности, например, полиномиальную сложность для задачи поиска максимальной клики -полной[1][2].
По этой причине были введены ограничения на исследуемые алгоритмы. Требуется, чтобы для получения новых кандидатов на решение использовались только беспристрастные (позиция элемента в битовой строке и его значение не влияют на выбор битов для изменения) вариативные операторы. Также было введено понятие арности —
-арный беспристрастный black-box алгоритм использует только те операторы, которые принимают не более чем аргументов. Для некоторых классов задач такой подход к опеределению black-box сложности позволяет получить более реалистичные оценки вычислительной трудности. Операторы с арностью называют мутационными. В настоящей статье показано, что даже для алгоритмов, использующих только мутационные операторы, можно получить нереалистично маленькую оценку black-box сложности.Неограниченная и беспристрастная Black-box модели
Обозначения
- — положительные целые числа;
- :
- ;
- ;
- для битовой строки :
- — побитовое дополнение строки ;
- — побитовое исключающее или;
- для любого множества :
- — множество всех подмножеств множества
- для :
- — множество всех перестановок ;
- для и :
- ;
- — количество единиц в битовой строке;
- под понимается натуральный логарифм.
Неограниченная Black-box модель
Рассматривается класс алгоритмов оптимизации, которые получают информацию о решаемой задаче через вычисление функции приспособленности возможных решений. Заданная функция приспособленности вычисляется оракулом, или дается как black-box. Алгоритм может запросить у оракула значение функции для любого решения, однако больше никакой информации о решении получить не может.
В качестве функции приспособленности берется псевдо-булевая функция
.Согласно концепции black-box, алгоритм может включать следующие действия:
- выбор вероятностного распределения над ;
- выбор кандидата cогласно выбранному распределению;
- запрос значения функции приспособленности выбранного кандидата у оракула.
Схема неограниченного black-box алгоритма:
Инициализация: выбратьсогласно некоторому вероятностному распределению над . Запросить . Оптимизация: for until условие остановки do Исходя из , выбрать вероятностное распределение над . Выбрать согласно и запросить .
В качестве времени работы black-box алгоритма берется количество запросов к оракулу, сделанное до первого запроса с оптимальным решением.
Пусть
— класс псевдо-булевых функций. Сложностью алгоритма над называется максимальное предположительное время работы на функции (в худшем случае). Сложностью относительно класса алгоритмов называется минимальная сложность среди всех над . Неограниченной black-box сложностью называется сложность относительно класса неограниченных black-box алгоритмов.Беспристрастная Black-box модель
Класс неограниченных black-box алгоритмов слишком мощный. Например для любого функционального класса
неограниченная black-box сложность равна единице — алгоритм, который просто запрашивает оптимальное решение первым же шагом, удовлетворяет этому условию.Чтобы избежать этих недостатков была введена более строгая модель. В ней алгоритмы могут генерировать новые решения используя только беспристрастные вариативные операторы.
Определение: |
| -арным беспристрастным распределением называется семейство вероятностных распределений над таких, что для любых выполняются следующие условия:
Первое условие называется -инвариантностью, второе — перестановочной инвариантностью. Оператор, выбранный из -арного беспристрастного распределения, называется -арным беспристрастным вариативным оператором.
Схема
-арного беспристрастного black-box алгоритма:Инициализация: выбратьравновероятно из . Запросить . Оптимизация: for until условие остановки do Исходя из , выбрать индексов и -арное беспристрастное распределение . Выбрать согласно и запросить .
Лемма: |
Пусть для задачи существует black-box алгоритм , который с константной вероятностью успеха решает за итераций. Тогда black-box сложность не больше . |
Доказательство: |
Доказательство приведено в работе [1]. |
Jump функция
Определение: |
Далее будет показано, что для любого константного можно с высокой вероятностью решить проблему [3] за малое количество black-box обращений к . С помощью этого утверждения можно показать, что для любой константы беспристрастная black-box сложность для функции нереалистично мала.
Лемма: |
существует унарная беспристрастная функция , использующая запросов к такая, что для всех битовых строк , с вероятностью . |
Доказательство: |
Используется унарный беспристрастный вариативный оператор , который равновероятно выбирает строку из -окрестности для аргумента (битовую строку, которая отличается в позициях). Ниже предлагается функция , которая использует для аппроксимации . Функция выбирает битовых строк в -окрестности . Если , то есть вероятность того, что хотя бы раз в будут заменены только единицы, что приведет к тому, что . Так как больше никакая строка из выборки не будет иметь меньшее значение, то добавление к минимальному ненулевому значению других строк из выборки приведет к нужному результату — функция вернет количество единиц в строке . Случай, когда , аналогичен.Понятно, что функция корректна при всех [4], получается граница на вероятность выбора единиц: , таких, что . Остальные два случая симметричны, поэтому пусть . Очевидно, что результат функции корректен тогда и только тогда, когда хотя бы в одной из строк были заменены только единицы. Требуется вычислить вероятность этого события. Итеративно выбираются бит для замены, поэтому после итераций имеется как минимум позиций с единицей из невыбранных позиций. Отсюда, с использованием неравенства Бернулли
Таким образом:
Функция :ifthen output ; ; if then ; else ; output ; |
Теперь, используя предыдущую лемму, можно найти беспристрастную black-box сложность для функции при константном .
Теорема: |
Для константы беспристрастная black-box сложность :
|
Доказательство: |
Доказательство приведено в работе [1]. |
Функции из предыдущей леммы для работы необходимо знать параметр , но ее можно модифицировать таким образом, что она будет работать без этого знания. Как только функция впервые выберет случайную битовую строку с она определит , затем продолжит работу как было описано выше. Параметр определяется с помощью выбора достаточно большого количества случайных строк в -окрестности от строки с , начиная с и продолжая до тех пор, пока не станет отличным от нуля. Найденная строка будет иметь максимальное значение . Из этого значения и функция может вычислить .
Задача о разбиении
Задача: |
Задача о разбиении [5] ( problem) ставится следующим образом. Дано мультимножество положительных целых чисел (весов). Возможно ли разбить его на два непересекающихся множества таким образом, что ? |
Оптимизационная версия задачи ставит вопрос о минимизации функции .
Задача
является -трудной. Предположительно и не существует полиномиального алгоритма решения этой задачи.Лемма: |
Задача остается -трудной, когда . |
Далее
— подкласс задачи с заданными различными весами.Далее предлагаются две различные функции приспособленности и показывается, что в обоих случаях может быть достигнута полиномиальная беспристрастная black-box сложность. Показывается, что унарная беспристрастная black-box сложность для задачи
равна .Знаковая функция приспособленности
Пусть
— множество всех возможных решений для . Знаковая функция приспособленности определяется следующим образом:- .
Цель заключается в минимизации
.Необходимо ввести нумерацию элементов
— . Для любой битовой строки определены и . Тогда функция приспособленности преобразуется к следующему виду:- .
Теорема: |
Унарная беспристрастная black-box сложность задачи относительно функции приспособленности равна , где . |
Доказательство: |
Для доказательства теоретмы строится алгоритм с применением двух вариативных операторов:
Для краткости полагается .Следующий алгоритм служит доказательством теоремы: 1 Инициализация 2За . Запрос ; 3 ; 4 Определение весов 5 while do 6 ; 7 . Запрос ; 8 ; 9 if then 10 ; 11 else ; 12 Оптимизация 13 В оффлайне перебором вычисляется оптимальное решение и множество — множество элементов, которые необходимо переместить. 14 ; 15 while do 16 . Запрос ; 17 if then 18 , ; итераций определяются веса всех элементов . Зная веса элементов, в оффлайне перебором находится оптимальное решение задачи, после чего это решение необходимо восстановить с помощью вариативного -арного оператора. Для этого построено множество — множество элементов, которые необходимо переместить для получения оптимального решения. В итоге, беспристрастная black-box сложность задачи относительно заданной функции приспособленности равна . Полное доказательство приведено в работе [1]. |
Беззнаковая функция приспособленности
Можно заметить, что при доказательстве предыдущей теоремы происходила минимизация не самой функции , а только ее абсолютной величины. Однако та же асимптотика достигается и для беззнаковой функции приспособленности. Сложность заключается в том, что в этом случае нельзя просто определить вес перемещенного элемента. Этот факт выражается в более сложной процедуре для определения весов элементов.
Теорема: |
Унарная беспристрастная black-box сложность задачи относительно функции приспособленности равна . Где . |
Доказательство: |
Для краткости полагается:
Общая идея алгоритма состоит в следующем:
Следующий алгоритм является доказательством теоремы: 1 Инициализация 2Можно показать, что приведенный алгоритм с большой вероятностью за . Запрос ; 3 Перемещение всех элементов в одну корзину 4 for to do 5 . Запрос ; 6 Пусть ; 7 ; 8 for to do 9 . Запрос ; 10 if then ; 11 Определение весов всех элементов 12 for to do 13 . Запрос ; 14 Оптимизация 15 В оффлайне перебором вычисляется оптимальное решение , такое что . ; 16 for to do 17 . Запрос ; 18 if and then 19 вычислить ; 20 if and then 21 ; 22 for to do 23 . Запрос ; запросов находит оптимальное решение. Полное доказательство приведено в работе [1]. |