Факторгруппа — различия между версиями
(→Примеры) |
(→Примеры) |
||
Строка 27: | Строка 27: | ||
* Рассмотрим <tex>G=\mathbb{Z}</tex> и её нормальную подгруппу <tex>H=n\mathbb{Z}</tex>, тогда <tex>G/H=\mathbb{Z}/n\mathbb{Z}</tex> (группы вычетов по модулю <tex>n</tex>) будет являться факторгруппой G по H. | * Рассмотрим <tex>G=\mathbb{Z}</tex> и её нормальную подгруппу <tex>H=n\mathbb{Z}</tex>, тогда <tex>G/H=\mathbb{Z}/n\mathbb{Z}</tex> (группы вычетов по модулю <tex>n</tex>) будет являться факторгруппой G по H. | ||
* Рассмотрим группу невырожденных матриц <tex> GL_n</tex>. Отображение <tex>A \rightarrow \det A</tex> является гомоморфизмом <tex>GL_n \rightarrow \mathbb{R}</tex>. Ядро — группа матриц с единичным определителем <tex>SL_n</tex>. Поэтому <tex>SL_n</tex> является нормальной подгруппой в <tex>GL_n</tex> и факторгруппа <tex>GL_n/SL_n=\mathbb{R}</tex>. | * Рассмотрим группу невырожденных матриц <tex> GL_n</tex>. Отображение <tex>A \rightarrow \det A</tex> является гомоморфизмом <tex>GL_n \rightarrow \mathbb{R}</tex>. Ядро — группа матриц с единичным определителем <tex>SL_n</tex>. Поэтому <tex>SL_n</tex> является нормальной подгруппой в <tex>GL_n</tex> и факторгруппа <tex>GL_n/SL_n=\mathbb{R}</tex>. | ||
+ | * Подгруппа ортогональных матриц <tex>O_n\subset GL_n</tex> не является нормальной. Рассмотрим любую матрицу <tex>A \in GL_n,\, U \in O_n</tex> и проверим ортогональность матрицы <tex> AUA^{-1} </tex>: <tex> (AUA^{-1})^T(AUA^{-1})=(A^{-1})^TU^TA^TAUA^{-1}\neq E</tex>. То есть <tex>AO_nA^{-1}\neq O_n</tex>, что и означает, что <tex>O_n</tex> не является нормальной подгруппой <tex>GL_n</tex>. | ||
[[Категория: Теория групп]] | [[Категория: Теория групп]] |
Версия 12:15, 11 июля 2010
Эта статья требует доработки!
- Требуется еще несколько примеров факторгрупп.
- Требуется пример группы и ее подгруппы (не нормальной), для которых не является группой.
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Факторгруппа
Рассмотрим группу и ее нормальную подгруппу . Пусть — множество смежных классов по . Определим в групповую операцию по следующему правилу.
Определение: |
Произведением смежностных классов | и назовем смежностный класс .
Утверждение: |
Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей и . |
Пусть В самом деле, . Докажем, что . Достаточно показать, что . . Элемент лежит в по свойству нормальности . Следовательно, . |
Определение: |
Таким образом, множество смежных классов | с введенной на нем операцией произведения образует группу, которая называется факторгруппой по . Нейтральным элементом является , обратным к — .
Примеры
- Рассмотрим и её нормальную подгруппу , тогда (группы вычетов по модулю ) будет являться факторгруппой G по H.
- Рассмотрим группу невырожденных матриц . Отображение является гомоморфизмом . Ядро — группа матриц с единичным определителем . Поэтому является нормальной подгруппой в и факторгруппа .
- Подгруппа ортогональных матриц не является нормальной. Рассмотрим любую матрицу и проверим ортогональность матрицы : . То есть , что и означает, что не является нормальной подгруппой .