Лемма Бернсайда, задача о числе ожерелий — различия между версиями
Строка 28: | Строка 28: | ||
Эта задача равносильна следующей задаче: сколькими различными способами можно раскрасить вершины правильного <tex>n</tex>угольника вершины которого окрашены в цветов, а количество вершин каждого цвета равно <tex>n_i</tex>. Две расскраски считаются разными, если из одной нельзя получить другую с помощью симметрии или вращения. | Эта задача равносильна следующей задаче: сколькими различными способами можно раскрасить вершины правильного <tex>n</tex>угольника вершины которого окрашены в цветов, а количество вершин каждого цвета равно <tex>n_i</tex>. Две расскраски считаются разными, если из одной нельзя получить другую с помощью симметрии или вращения. | ||
− | Пусть <tex>M</tex> — множество всех возможных окрасок <tex>n</tex>угольника, <tex>D</tex> — группа симметрий <tex>n</tex>угольника, состоящая из <tex>2n</tex> преобразований. Группа <tex>G</tex> определяет группу перестановок на множестве <tex>M</tex>. Пусть <tex> | + | Пусть <tex>M</tex> — множество всех возможных окрасок <tex>n</tex>угольника, <tex>D</tex> — группа симметрий <tex>n</tex>угольника, состоящая из <tex>2n</tex> преобразований. Группа <tex>G</tex> определяет группу перестановок на множестве <tex>M</tex>. Пусть <tex> d \in D</tex> — некое преобразование симметрии <tex> \Rightarrow </tex> для любого многоугольник <tex>x \in M</tex> можно сопоставить многоугольник получаемый из него симметрией <tex>d</tex>. Назовем сопоставление этой перестановки <tex>d'</tex>. Группу всех таких перестановок из <tex>D</tex> назовем <tex>D'</tex>. |
Два многоугольника будут считаться разными, если из одного невозможно получить другой какой-либо перестановкой <tex>d' \in D'</tex> (они содержаться на разных орбитах группы <tex>D'</tex> действующей на множестве <tex>M</tex>). Поэтому для получения количества различных раскрасок вершин <tex>n</tex>угольника достаточно найти количество орбит группы <tex>D'</tex> на множестве <tex>M</tex>. По лемме Бернсайда, для этого нужно посчитать число неподвижных точек каждой перестановки <tex> d' \in D'</tex>. | Два многоугольника будут считаться разными, если из одного невозможно получить другой какой-либо перестановкой <tex>d' \in D'</tex> (они содержаться на разных орбитах группы <tex>D'</tex> действующей на множестве <tex>M</tex>). Поэтому для получения количества различных раскрасок вершин <tex>n</tex>угольника достаточно найти количество орбит группы <tex>D'</tex> на множестве <tex>M</tex>. По лемме Бернсайда, для этого нужно посчитать число неподвижных точек каждой перестановки <tex> d' \in D'</tex>. | ||
Строка 37: | Строка 37: | ||
пусть <tex>k</tex> — общий делитель <tex>n_i</tex>ых<tex>(i \in [1..m]) \Rightarrow</tex> поворот <tex>a_1</tex> на угол <tex>\frac { 2\pi } { k }</tex> оставит неподвижными ожерелья из <tex>k</tex> одинаковых кусков длинны <tex>\frac {n} {k}</tex>. Каждый кусок состоит из <tex>\frac {n_i} { k } </tex> бусен <tex>i</tex>ого цвета, поэтому число неподвижных точек для поворота будет равно количеству способов расставить бусины на <tex>\frac {n} {k}</tex> местах. Соответственно для перестановки <tex>d'</tex> число неподвижных точек будет равно <tex>t(d')=P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>, где <tex>P(x_1, x_2, ..., x_m)</tex> — полиномиальные коэффициенты. | пусть <tex>k</tex> — общий делитель <tex>n_i</tex>ых<tex>(i \in [1..m]) \Rightarrow</tex> поворот <tex>a_1</tex> на угол <tex>\frac { 2\pi } { k }</tex> оставит неподвижными ожерелья из <tex>k</tex> одинаковых кусков длинны <tex>\frac {n} {k}</tex>. Каждый кусок состоит из <tex>\frac {n_i} { k } </tex> бусен <tex>i</tex>ого цвета, поэтому число неподвижных точек для поворота будет равно количеству способов расставить бусины на <tex>\frac {n} {k}</tex> местах. Соответственно для перестановки <tex>d'</tex> число неподвижных точек будет равно <tex>t(d')=P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>, где <tex>P(x_1, x_2, ..., x_m)</tex> — полиномиальные коэффициенты. | ||
− | рассмотрим поворот <tex> a_i</tex> на угол <tex>\frac {2i\pi} {k}</tex>, где <tex> i \in [1..k]</tex>. Количество его неподвижных точек равно количеству неподвижных точек <tex>a_1</tex>, если <tex> i</tex> взаимно просто с <tex>k</tex>. Количество взаимно простых с <tex>k</tex>(не превосходящих <tex>k</tex>) — является функцией Эйлера <tex>\phi(k)</tex>. Пусть <tex>S</tex> — сумма по всем поворотам, тогда <tex>S= \sum_{k} \phi(k) \cdot P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>, где k пробегает множество общих делителей <tex>n_1, n_2, ..., n_m</tex>. | + | рассмотрим поворот <tex> a_i</tex> на угол <tex>\frac {2i\pi} {k}</tex>, где <tex> i \in [1..k]</tex>. Количество его неподвижных точек равно количеству неподвижных точек <tex>a_1</tex>, если <tex> i</tex> взаимно просто с <tex>k</tex>. Количество взаимно простых с <tex>k</tex>(не превосходящих <tex>k</tex>) — является функцией Эйлера <tex>\phi(k)</tex>. Пусть <tex>S</tex> — сумма по всем поворотам, тогда <tex>S= \sum_{k} \phi(k) \cdot P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>, где k пробегает множество общих делителей <tex>n_1, n_2, ..., n_m</tex>. |
− | |||
'''рассмотрим симметрии относительно осей:''' | '''рассмотрим симметрии относительно осей:''' | ||
Строка 44: | Строка 43: | ||
''1 случай:'' | ''1 случай:'' | ||
− | <tex>n</tex> — нечетно. | + | <tex>n</tex> — нечетно. Тогда симметричные ожерелья существуют только если среди <tex>n_i/,(i \in [1..m])</tex> только одно число нечетное. Пусть <tex>n_1</tex> — нечетно, <tex>d</tex> — симметрия относительно оси, проходящей через некоторую вершину. Тогда неподвижными будут ожерелья, симметричные относительно оси проходящей через бусину цвета <tex>n_1</tex>. По одной стороне от оси будут находится <tex> \frac {n-1} { 2 } </tex> бусин: <tex> \frac {n_1-1} { 2 } </tex> бусин <tex>n_1 цвета, <tex> \frac {n_i} { 2 } </tex> бусин <tex>n_i</tex> цвета, где <tex>i \in [2.. m] \Rightarrow t(d')=P(\frac {n_1-1} { 2 }, \frac {n_2} { 2 }, ..., \frac {n_m} { 2 })=P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }]),</tex> где <tex>[x]</tex> — целая часть числа <tex>x</tex>. Тогда такое же число неподвижных точек имеет каждая из <tex>n</tex> соответствующая таким симметриям. Пусть <tex>S'</tex> — сумма числа всех неподвижных точек <tex>t(d')</tex> по всем отражениям: <tex>S'=m \cdot P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }])</tex>. |
+ | |||
''2 случай:'' | ''2 случай:'' |
Версия 22:14, 9 августа 2010
Эта статья требует доработки!
- Надо решить задачу о числе ожерелий!
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Лемма (Бернсайда): |
Число орбит |
Утверждение (1): |
Преобразуем выражение для числа орбит, полученное из леммы Бернсайда.
Последнее преобразование выполнено на основании утверждения 1.
Задача о числе ожерелий
Пусть есть
бусинок разных сортов, назовем количество бусинок ого цвета . Найти число ожерелий которые можно составить из этих бусинок. Ожерелья полученные поворотом друг из друга поворотом или отражением считаются одним ожерельем.решение:
Эта задача равносильна следующей задаче: сколькими различными способами можно раскрасить вершины правильного
угольника вершины которого окрашены в цветов, а количество вершин каждого цвета равно . Две расскраски считаются разными, если из одной нельзя получить другую с помощью симметрии или вращения.Пусть
— множество всех возможных окрасок угольника, — группа симметрий угольника, состоящая из преобразований. Группа определяет группу перестановок на множестве . Пусть — некое преобразование симметрии для любого многоугольник можно сопоставить многоугольник получаемый из него симметрией . Назовем сопоставление этой перестановки . Группу всех таких перестановок из назовем .Два многоугольника будут считаться разными, если из одного невозможно получить другой какой-либо перестановкой
(они содержаться на разных орбитах группы действующей на множестве ). Поэтому для получения количества различных раскрасок вершин угольника достаточно найти количество орбит группы на множестве . По лемме Бернсайда, для этого нужно посчитать число неподвижных точек каждой перестановки .
Рассмотрим повороты:
пусть
— общий делитель ых поворот на угол оставит неподвижными ожерелья из одинаковых кусков длинны . Каждый кусок состоит из бусен ого цвета, поэтому число неподвижных точек для поворота будет равно количеству способов расставить бусины на местах. Соответственно для перестановки число неподвижных точек будет равно , где — полиномиальные коэффициенты.рассмотрим поворот
на угол , где . Количество его неподвижных точек равно количеству неподвижных точек , если взаимно просто с . Количество взаимно простых с (не превосходящих ) — является функцией Эйлера . Пусть — сумма по всем поворотам, тогда , где k пробегает множество общих делителей .рассмотрим симметрии относительно осей:
1 случай:
— нечетно. Тогда симметричные ожерелья существуют только если среди только одно число нечетное. Пусть — нечетно, — симметрия относительно оси, проходящей через некоторую вершину. Тогда неподвижными будут ожерелья, симметричные относительно оси проходящей через бусину цвета . По одной стороне от оси будут находится бусин: бусин бусин цвета, где где — целая часть числа . Тогда такое же число неподвижных точек имеет каждая из соответствующая таким симметриям. Пусть — сумма числа всех неподвижных точек по всем отражениям: .
2 случай:
— четно.