QpmtnCmax — различия между версиями
Creep (обсуждение | вклад) (→Пример) |
Creep (обсуждение | вклад) (→Пример) |
||
Строка 74: | Строка 74: | ||
[[Файл:Qpmtncmax.png|600px|thumb|right|Картинка к примеру]] | [[Файл:Qpmtncmax.png|600px|thumb|right|Картинка к примеру]] | ||
− | Пусть у нас есть | + | Пусть у нас есть 6 работ и 3 станка. Покажем работу алгоритма для данного случая. |
− | В начальный момент времени начинаем обрабатывать работы с наибольшим временем выполнения <tex>J_1- | + | В начальный момент времени начинаем обрабатывать работы с наибольшим временем выполнения <tex>J_1-J_3</tex> на станках <tex>M_1-M_3</tex> соответственно. В момент времени <tex>T_1</tex> <tex>lvl</tex> 1-ой работы и 2-ой работы совпадает. С этого момента начинаем обрабатывать работы <tex> J_1,J_2</tex> синхронно на станках: <tex>M_1 M_2</tex>. В момент времени <tex>T_2</tex> работа <tex>J_3</tex> опускается до уровня работы <tex>J_4</tex>.Работы <tex> J_3,J_4</tex> выполняем одновременно на одном станке <tex> M_3</tex>. В момент времени <tex>T_3</tex> начинаем выполнять первые четыре работы на всех станках одновременно, далее просто добавятся работы <tex>J_5 J_6</tex> и все работы закончатся одновременно. |
==Время работы== | ==Время работы== |
Версия 11:46, 21 июня 2012
Содержание
Постановка задачи
Есть несколько станков с разной скоростью выполнения работ. Работу на каждом из станков можно прервать и продолжить позже.
Цель - выполнить все как можно быстрее.
1. Найдем нижнюю границу времени выполнения.
2. Составим оптимальное расписание.
Алгоритм построения расписания
Где
; ; - вес i-ой работы ; - скорость работы j-oй машины ; ;Необходимое условие для выполнения всех работ в интервале
:или
Нижняя граница
:
Будем назвать Level-ом работы
- невыполненную часть работы в момент времениДалее построим расписание, которое достигает нашей оценки
, с помощью Level-алгоритма.Level - алгоритм:
WHILE существуют работы с положительным level Assign(t) работа выполненная в момент времени найти минимальное s > t. Для которого выполняется для некоторых работ i , j: && Построение расписания
Функция
:- множество работ с положительным level - множество всех станков WHILE ( != 0 && != 0) Найти множество работ подмножество ,level которых максимальный (| |,| |) Назначаем работы из мн-ва на самых быстрых машин из мн-ва \ удаляем из мн-ва самых быстрых машин
Доказательство корректности алгоритма
Так как нижняя граница
:
то достаточно показать, что составленное расписание достигает этой оценки.
Будем считать, что в начале алгоритма мы имеем
. Это утверждение не меняется на протяжении всего выполнения алгоритма, для любого момента времени. Получаем: . Докажем что алгоритм составляет расписание в соответствии с этим свойством. Чтобы доказать этот факт, будем считать что в любой момент времени T нет простоев машин, когда есть хотя бы одна невыполненная работа. Получаем:или
Таким образом необходимая оценка достигается нашим алгоритмом.
Допустим хотя бы одна машина простаивает, в момент когда есть невыполненные работы, мы имеем следующее неравенство для времен окончания работ на станках
:
В этом случае, если
для некоторого , Level последней работы выполнявшейся на станке равен . Где достаточно мал, и меньше чем Level последней работы на станке . Пришли к противоречию.Пример
Пусть у нас есть 6 работ и 3 станка. Покажем работу алгоритма для данного случая.
В начальный момент времени начинаем обрабатывать работы с наибольшим временем выполнения
на станках соответственно. В момент времени 1-ой работы и 2-ой работы совпадает. С этого момента начинаем обрабатывать работы синхронно на станках: . В момент времени работа опускается до уровня работы .Работы выполняем одновременно на одном станке . В момент времени начинаем выполнять первые четыре работы на всех станках одновременно, далее просто добавятся работы и все работы закончатся одновременно.Время работы
Level-алгоритм вызывает функцию Assign(t) в самом худшем случае
раз. Функция Assign(t) выполняется за . Итоговое время работы .Литература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8