1ripi1sumwc — различия между версиями
(→Доказательство корректности алгоритма) |
|||
Строка 27: | Строка 27: | ||
Поменяем местами работы с весами <tex>w_{1}</tex> и <tex>w_{2}</tex> в <tex>S_{2}</tex> и полуим расписание <tex>S_{3}</tex>. Это возможно, потому что время появления этих работ не меньше <tex>t_{1}</tex>.<br/> | Поменяем местами работы с весами <tex>w_{1}</tex> и <tex>w_{2}</tex> в <tex>S_{2}</tex> и полуим расписание <tex>S_{3}</tex>. Это возможно, потому что время появления этих работ не меньше <tex>t_{1}</tex>.<br/> | ||
При такой перестановке ответы на задачу для <tex>S_{2}</tex> и <tex>S_{3}</tex> будут отличаться на | При такой перестановке ответы на задачу для <tex>S_{2}</tex> и <tex>S_{3}</tex> будут отличаться на | ||
− | <ul><tex> | + | <ul><tex>t_{1}w_{2} + t_{2}w_{1} - t_{1}w_{1} + t_{2}w_{2} = t_{1}(w_{2} - w_{1}) + t_{2}(w_{1} - w_{2}) = (t_{1} - t_{2})(w_{2} - w_{1})</tex></ul> |
Первая скобка отрицательная: <tex>t_{1} < t_{2}</tex>. Вторая скобка тоже отрицательная из того, что в <tex>S_{1}</tex> работа с весом <tex>w_1</tex> выполняется раньше, значит её вес должен быть больше <tex>w_2</tex>.<br/> | Первая скобка отрицательная: <tex>t_{1} < t_{2}</tex>. Вторая скобка тоже отрицательная из того, что в <tex>S_{1}</tex> работа с весом <tex>w_1</tex> выполняется раньше, значит её вес должен быть больше <tex>w_2</tex>.<br/> | ||
Итого имеем, что ответ для <tex>S_{2}</tex> больше, чем ответ для <tex>S_{3}</tex>. Следовательно расписание <tex>S_2</tex> неоптимальное. Получили противоречие. Значит не существует такого момента времени, когда расписание <tex>S_{1}</tex> отличается от оптимального. Следовательно мы доказали, что оно оптимальное. | Итого имеем, что ответ для <tex>S_{2}</tex> больше, чем ответ для <tex>S_{3}</tex>. Следовательно расписание <tex>S_2</tex> неоптимальное. Получили противоречие. Значит не существует такого момента времени, когда расписание <tex>S_{1}</tex> отличается от оптимального. Следовательно мы доказали, что оно оптимальное. |
Версия 00:00, 23 июня 2012
Содержание
Постановка задачи
Рассмотрим задачу:
- Дано работ и один станок.
- Для каждой работы известно её время появления и вес . Время выполнения всех работ равно .
Требуется выполнить все работы, чтобы значение
было минимальным.Описание алгоритма
Пусть
Для каждого очередного значения , которое изменяется от до времени окончания последней работы, будем:
- Выбирать работу из множества невыполненных работ, у которой , а значение максимально.
- Если мы смогли найти работу , то выполняем её в момент времени и удаляем из множества невыполненных работ.
- Увеличиваем на один.
Доказательство корректности алгоритма
Теорема: |
Расписание, построенное данным алгоритмом, является корректным и оптимальным. |
Доказательство: |
Доказательство будем вести от противного. Первая скобка отрицательная: |
Псевдокод
while if
Сложность алгоритма
Множество
станет пустым не позже, чем через шагов цикла. Определить максимум в множестве можно за время , используя , например, очередь с приоритетами. Значит общее время работы алгоритма