PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
Kasetkin (обсуждение | вклад) |
Kasetkin (обсуждение | вклад) |
||
| Строка 31: | Строка 31: | ||
Под выражением <tex>\exists I</tex> будем понимать <tex> \exists x_{I,1,c_1} \, \exists x_{I,1,c_2} \ldots \exists x_{I,1,c_\Omega} \, \exists x_{I,2,c_1} \ldots</tex> Аналогично выражение <tex> \forall I</tex> обозначает <tex> \forall x_{I,1,c_1} \, \forall x_{I,1,c_2} \ldots \forall x_{I,1,c_\Omega} \, \forall x_{I,2,c_1} \ldots</tex> | Под выражением <tex>\exists I</tex> будем понимать <tex> \exists x_{I,1,c_1} \, \exists x_{I,1,c_2} \ldots \exists x_{I,1,c_\Omega} \, \exists x_{I,2,c_1} \ldots</tex> Аналогично выражение <tex> \forall I</tex> обозначает <tex> \forall x_{I,1,c_1} \, \forall x_{I,1,c_2} \ldots \forall x_{I,1,c_\Omega} \, \forall x_{I,2,c_1} \ldots</tex> | ||
| − | Рассмотрим функцию <tex>\phi(A, B, t)</tex>, проверяющую следующее условие: конфигурация <tex>B</tex> достижима из конфигурации <tex>A</tex> не более, чем за <tex> | + | Рассмотрим функцию <tex>\phi(A, B, t)</tex>, проверяющую следующее условие: конфигурация <tex>B</tex> достижима из конфигурации <tex>A</tex> не более, чем за <tex>t</tex> шагов. |
<tex>\phi(A, B, 0) = (A = B) \lor (A \vdash B)</tex>. | <tex>\phi(A, B, 0) = (A = B) \lor (A \vdash B)</tex>. | ||
| Строка 41: | Строка 41: | ||
<tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, \lceil t/2\rceil) \nrightarrow \neg[(U = A \land V = R) \lor (U = R \land V = B)]\}</tex>. | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, \lceil t/2\rceil) \nrightarrow \neg[(U = A \land V = R) \lor (U = R \land V = B)]\}</tex>. | ||
| + | Получившаяся формула верна только когда верно <tex>\phi(U, V, \lceil t/2\rceil)</tex> и ложно <tex>\neg[(U = A \land V = R) \lor (U = R \land V = B)]</tex>. Это равносильно тому, что <tex>V</tex> достижима из <tex>U</tex> не более, чем за <tex>\lceil t/2\rceil</tex> шагов, и либо <tex>U = A \land V = R</tex>, либо <tex>U = R \land V = B</tex>. А если верно и то, и другое, то конфигурация <tex>B</tex> достижима из конфигурации <tex>A</tex> не более, чем за <tex>t</tex> шагов. | ||
Размер полученной функции <tex>\phi(A, B, t)</tex> полиномиален относительно <tex>n</tex>. | Размер полученной функции <tex>\phi(A, B, t)</tex> полиномиален относительно <tex>n</tex>. | ||
Версия 18:14, 24 июня 2012
| Определение: |
| расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
| Определение: |
| это пропозициональная формула с кванторами. Кванторы для каждой переменной записываются в начале выражения. |
| Лемма (1): |
. |
| Доказательство: |
|
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время. if return if return if returnЭта программа требует дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
| Лемма (2): |
. |
| Доказательство: |
|
Рассмотрим язык . Построим такую функцию , что и , где — полином. Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера. Будем считать, что длина ленты машины есть , где — полином, а — длина входа. Пусть , — конфигурация . Конфигурация однозначно задаётся позицией и содержанием рабочей ленты. Введём обозначение — в конфигурации на -том месте стоит символ . Тогда размер конфигурации равен . Следовательно всего конфигураций . Под выражением будем понимать Аналогично выражение обозначает Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов. . . Заметим, что данная формула имеет экспоненциальный размер, так как за один шаг рекурсии длина пути уменьшается на одни, а размер формулы удваивается. Поэтому воспользуемся квантором и перепишем её следующим образом: . Получившаяся формула верна только когда верно и ложно . Это равносильно тому, что достижима из не более, чем за шагов, и либо , либо . А если верно и то, и другое, то конфигурация достижима из конфигурации не более, чем за шагов. Размер полученной функции полиномиален относительно . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из . . Выражения и можно записать следующим образом: . .
Если , то существует путь из стартовой конфигурации в финишную, причём длины не более, чем , а значит формула верна. Если формула оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . Таким образом, . |
| Теорема: |
. |
| Доказательство: |
| Доказательство непосредственно следует из лемм. |