PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
Kasetkin (обсуждение | вклад) |
|||
| Строка 42: | Строка 42: | ||
Общую длину получившейся формулы можно представить как <tex>L(t) = 2 L(t-1)+const</tex>. Заметим, что из-за умножения на 2 на каждом шаге рекурсии <tex>L(t)</tex> будет иметь экспоненциальный размер относительно <tex>t</tex>. Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором <tex>\forall</tex> и перепишем её следующим образом: | Общую длину получившейся формулы можно представить как <tex>L(t) = 2 L(t-1)+const</tex>. Заметим, что из-за умножения на 2 на каждом шаге рекурсии <tex>L(t)</tex> будет иметь экспоненциальный размер относительно <tex>t</tex>. Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором <tex>\forall</tex> и перепишем её следующим образом: | ||
| − | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, t-1) \ | + | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, t-1) \lor \neg [(U = A \land V = R) \lor (U = R \land V = B)]\}</tex>. |
| − | Получившаяся в фигурых скобках формула верна только когда верно <tex>\phi(U, V, t-1)</tex> | + | Получившаяся в фигурых скобках формула верна только когда верно <tex>\phi(U, V, t-1)</tex> или <tex>\neg[(U = A \land V = R) \lor (U = R \land V = B)]</tex>. Это равносильно тому, что существует такое промежуточное состояние <tex>R</tex>, что <tex>R</tex> достижима из <tex>A</tex> не более, чем за <tex>2^{t-1}</tex> шагов, и <tex>B</tex> достижима из <tex>R</tex> за <tex>2^{t-1}</tex> шагов. А если верно и то, и другое, то конфигурация <tex>B</tex> достижима из конфигурации <tex>A</tex> не более, чем за <tex>2^t</tex> шагов. |
За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как <tex>L(t) = L(t-1)+const</tex>, где <tex>const = \|\exists R \,\forall U \,\forall V \, \{\| + \|\land [(U = A \land V = R) \lor (U = R \land V = B)]\}\|</tex>. | За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как <tex>L(t) = L(t-1)+const</tex>, где <tex>const = \|\exists R \,\forall U \,\forall V \, \{\| + \|\land [(U = A \land V = R) \lor (U = R \land V = B)]\}\|</tex>. | ||
Версия 17:54, 25 июня 2012
| Определение: |
| расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
| Определение: |
| — это пропозициональная формула с кванторами. Кванторы для каждой переменной записываются в начале выражения. |
| Лемма (1): |
. |
| Доказательство: |
|
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время. if if return if return if return if returnЭта программа требует дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
| Лемма (2): |
. |
| Доказательство: |
|
Рассмотрим язык . Построим такую функцию , что и , где — полином. Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера. Будем считать, что длина ленты машины есть , где — полином, а — длина входа. Пусть , — конфигурация . Конфигурация задаётся позицией и содержанием рабочей ленты. Введём обозначение — в конфигурации на -том месте стоит символ . Тогда размер конфигурации равен . Следовательно всего конфигураций . Под выражением будем понимать Аналогично выражение обозначает Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов. . . Общую длину получившейся формулы можно представить как . Заметим, что из-за умножения на 2 на каждом шаге рекурсии будет иметь экспоненциальный размер относительно . Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором и перепишем её следующим образом: . Получившаяся в фигурых скобках формула верна только когда верно или . Это равносильно тому, что существует такое промежуточное состояние , что достижима из не более, чем за шагов, и достижима из за шагов. А если верно и то, и другое, то конфигурация достижима из конфигурации не более, чем за шагов. За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как , где . Следовательно, размер полученной функции полиномиален относительно . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из . . Выражения и можно записать следующим образом: . .
Если , то существует путь из стартовой конфигурации в финишную, длины не более, чем , а значит формула верна. Если формула оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . Таким образом, . |
| Теорема: |
. |
| Доказательство: |
| Доказательство непосредственно следует из лемм. |