PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
Kasetkin (обсуждение | вклад) м |
Kasetkin (обсуждение | вклад) м |
||
Строка 10: | Строка 10: | ||
|statement=<tex>\mathrm{TQBF} \in \mathrm{PS}</tex>. | |statement=<tex>\mathrm{TQBF} \in \mathrm{PS}</tex>. | ||
|proof=Чтобы доказать это, просто приведём программу <tex>solve</tex>, решающую булеву формулу с кванторами на <tex>O(n)</tex> дополнительной памяти и работающую за конечное время. | |proof=Чтобы доказать это, просто приведём программу <tex>solve</tex>, решающую булеву формулу с кванторами на <tex>O(n)</tex> дополнительной памяти и работающую за конечное время. | ||
− | <tex>solve( | + | <tex>solve(Q_1 x_1 \ldots Q_n x_n \phi(x_1, \ldots, x_n))</tex> |
− | '''if''' | + | '''if''' n == 0 |
− | + | '''return''' <tex>\phi</tex> | |
− | + | '''if''' <tex>Q_1 = \forall</tex> | |
− | + | '''return''' <tex>solve(Q_{2} x_{2} \ldots Q_n x_n \phi(0, x_{2}, \ldots, x_n)) \land solve(Q_{2} x_{2} \ldots Q_n x_n \phi(1, x_{2}, \ldots, x_n))</tex> | |
− | + | '''if''' <tex>Q_1 = \exists</tex> | |
− | '''if''' <tex> | + | '''return''' <tex>solve(Q_{2} x_{2} \ldots Q_n x_n \phi(0, x_{2}, \ldots, x_n)) \lor solve(Q_{2} x_{2} \dots Q_n x_n \phi(1, x_{2}, \ldots, x_n))</tex> |
− | '''return''' <tex>solve(Q_{ | ||
− | '''if''' <tex> | ||
− | '''return''' <tex>solve(Q_{ | ||
Эта программа требует <tex>O(n)</tex> дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — <tex>n</tex>. | Эта программа требует <tex>O(n)</tex> дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — <tex>n</tex>. | ||
}} | }} | ||
Строка 42: | Строка 39: | ||
Общую длину получившейся формулы можно представить как <tex>L(t) = 2 L(t-1)+const</tex>. Заметим, что из-за умножения на 2 на каждом шаге рекурсии <tex>L(t)</tex> будет иметь экспоненциальный размер относительно <tex>t</tex>. Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором <tex>\forall</tex> и перепишем её следующим образом: | Общую длину получившейся формулы можно представить как <tex>L(t) = 2 L(t-1)+const</tex>. Заметим, что из-за умножения на 2 на каждом шаге рекурсии <tex>L(t)</tex> будет иметь экспоненциальный размер относительно <tex>t</tex>. Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором <tex>\forall</tex> и перепишем её следующим образом: | ||
− | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{ | + | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{[(U = A \land V = R) \lor (U = R \land V = B)] \rightarrow \phi(U, V, t-1)\}</tex>. |
− | Получившаяся | + | Получившаяся формула верна, если существует такая промежуточная конфигурация <tex>R</tex>, что для любых конфигураций <tex>U</tex> и <tex>V</tex> из того, что эти конфигурации нам интересны следует, что верно <tex>\phi(U, V, t-1)</tex>. А значит, конфигурация <tex>B</tex> достижима из конфигурации <tex>A</tex> не более, чем за <tex>2^t</tex> шагов. |
За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как <tex>L(t) = L(t-1)+const</tex>, где <tex>const = \|\exists R \,\forall U \,\forall V \, \{\| + \|\land [(U = A \land V = R) \lor (U = R \land V = B)]\}\|</tex>. | За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как <tex>L(t) = L(t-1)+const</tex>, где <tex>const = \|\exists R \,\forall U \,\forall V \, \{\| + \|\land [(U = A \land V = R) \lor (U = R \land V = B)]\}\|</tex>. |
Версия 18:25, 25 июня 2012
Определение: |
. | расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами.
Определение: |
— это пропозициональная формула с кванторами. Кванторы для каждой переменной записываются в начале выражения. |
Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if n == 0 return if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим такую функцию , что и , где — полином.Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера. Будем считать, что длина ленты машины есть , где — полином, а — длина входа.Пусть , — конфигурация . Конфигурация задаётся позицией и содержанием рабочей ленты. Введём обозначение — в конфигурации на -том месте стоит символ . Тогда размер конфигурации равен . Следовательно всего конфигураций .Под выражением будем понимать Аналогично выражение обозначаетРассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов.. . Общую длину получившейся формулы можно представить как . Заметим, что из-за умножения на 2 на каждом шаге рекурсии будет иметь экспоненциальный размер относительно . Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором и перепишем её следующим образом:. Получившаяся формула верна, если существует такая промежуточная конфигурация , что для любых конфигураций и из того, что эти конфигурации нам интересны следует, что верно . А значит, конфигурация достижима из конфигурации не более, чем за шагов.За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как , где . Следовательно, размер полученной функции полиномиален относительно .Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из .. Выражения и можно записать следующим образом:. .
Если , то существует путь из стартовой конфигурации в финишную, длины не более, чем , а значит формула верна.Если формула Таким образом, оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . . |
Теорема: |
. |
Доказательство: |
Доказательство непосредственно следует из лемм. |