403
правки
Изменения
Нет описания правки
Тогда <tex> \exists A_0 \subset A: \lambda A_0 > 0, \alpha(x) </tex> — ограничена на <tex> A_0 </tex>. <tex> A = \bigcup\limits_{n = 1}^{\infty} A(0 \le \alpha(x) \le n), \lambda A > 0 \Rightarrow \lambda A_n \to \lambda A \Rightarrow \exists n_0 : \lambda A_{n_0} > 0 </tex>, обозначим такой <tex>A_{n_0} </tex> за <tex> A_0 </tex>.
На <tex> A_0 </tex> <tex> \alpha </tex> — суммируема, по [[Классические теоремы о предельном переходе под знаком интеграла Лебега#Теорема Леви|теореме Б. Леви]], ряд можно почленно интегрировать. {{TODO|t=Почему можно выделить такое множество <tex>A_0</tex> конечной меры?}}
<tex> \int\limits_{A_0} \alpha(x) dx = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \cos^2(nx + \varphi_{n, x}) = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \frac{1 + \cos(2nx + 2\varphi_{n, x})}{2} = </tex>