Алгоритм Борувки — различия между версиями
(→Доказательство корректности) |
(→Доказательство корректности) |
||
Строка 16: | Строка 16: | ||
|id=lemma1 | |id=lemma1 | ||
|statement=Рассмотрим связный неориентированный взвешенный граф <tex> G = (V, E) </tex> с весовой функцией <tex>w : E \to \mathbb{R}</tex>. | |statement=Рассмотрим связный неориентированный взвешенный граф <tex> G = (V, E) </tex> с весовой функцией <tex>w : E \to \mathbb{R}</tex>. | ||
− | Пусть <tex>T</tex> = <tex> | + | Пусть <tex>T</tex> = {<tex>uv \in E : min[u] = uv || min[v] = uv</tex>} |
|proof=доказательство (необязательно) | |proof=доказательство (необязательно) |
Версия 17:58, 15 декабря 2012
Алгоритм Борувки — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Содержание
Описание алгоритма
Пусть
подграф графа . Изначально содердит все вершины из и не содержит ребер.Будем добавлять в
ребра следующим образом:Пока
не является деревом- Для каждой компоненты связанности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте.
- Добавим в все ребра, которые хотя бы для одной компоненты оказались минимальными.
Получившийся граф
является минимальным остовным деревом графа .Доказательство корректности
Лемма: |
Рассмотрим связный неориентированный взвешенный граф с весовой функцией .
Пусть = { } |
Доказательство: |
доказательство (необязательно) |
Реализация
Graph Boruvka(Graph G) while T.size < n init() // у вершины есть поле comp(компонента которой принадлежит вершина) findComp(T) // разбиваеv граф T на компоненты связынности обычным dfs-ом for uvE if u.comp != v.comp if minEdge[u.comp].w < uv.w minEdge[u.comp] = uv if minEdge[v.comp].w < uv.w minEdge[v.comp] = uv) for k Comp // Comp — множество компонент связанности в T T.addEdge(minEdge[k]) return T; |
Асимптотика
Время работы внутри главного цикла будет равно
.Количество итераций которое выполняется главным циклом равно
так как на каждой итерации количество компонент связанности уменьшается в 2 раза (изначально количество компонент равно , в итоге должна стать одна компонента).Общее время работы алгоритма получается
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)