Теорема Холла — различия между версиями
(→Теорема) |
(→Теорема) |
||
Строка 20: | Строка 20: | ||
|statement=Полное паросочетание существует тогда и только тогда, когда для любого <tex>A \subset L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. | |statement=Полное паросочетание существует тогда и только тогда, когда для любого <tex>A \subset L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. | ||
|proof= | |proof= | ||
− | <tex> | + | <tex>\Rightarrow</tex> Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию"). |
*В обратную сторону докажем по индукции(будем добавлять в изначально пустое паросочетание <tex>P</tex> по одному ребру, и доказывать, что мы можем это сделать, если <tex>P</tex> не полное). Таким образом, в конце получим что <tex>P</tex> — полное паросочетание. | *В обратную сторону докажем по индукции(будем добавлять в изначально пустое паросочетание <tex>P</tex> по одному ребру, и доказывать, что мы можем это сделать, если <tex>P</tex> не полное). Таким образом, в конце получим что <tex>P</tex> — полное паросочетание. | ||
#База: Одна вершина соединена хотя бы с одной вершиной из <tex>R</tex>. Следовательно база верна. | #База: Одна вершина соединена хотя бы с одной вершиной из <tex>R</tex>. Следовательно база верна. |
Версия 00:55, 24 декабря 2012
Содержание
Определения
Пусть
- двудольный граф. - множество вершин первой доли. - множество вершин правой доли.Определение: |
Полным(совершенным) паросочетанием называется паросочетание, в которое входят все вершины. |
Определение: |
Пусть | . Множeство соседей определим формулой:
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
Очевидно, что если существует полное паросочетание, то для любого выполнено . У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию").
|
Примечания
Иногда теорему называют теоремой о свадьбах.
Также теорема обобщается на граф, имеющий произвольное множество долей.