Контексты и синтаксические моноиды — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 24: Строка 24:
 
Язык <tex>L</tex> {{---}} регулярный <tex>\Leftrightarrow</tex> множество <tex>\{C_L^L(y) \mid y \in \sum^*\}</tex> его левых контекстов конечно
 
Язык <tex>L</tex> {{---}} регулярный <tex>\Leftrightarrow</tex> множество <tex>\{C_L^L(y) \mid y \in \sum^*\}</tex> его левых контекстов конечно
 
|proof=
 
|proof=
 +
<tex>C_L^L(y) = \overleftarrow{C_{\overleftarrow{L}}^R(\overleftarrow{y})}</tex>
 
}}
 
}}
  

Версия 21:58, 25 сентября 2010

Эта статья находится в разработке!

Контексты

Правый

Определение:
Правым контекстом [math]C_L^R(y)[/math] слова [math]y[/math] в языке [math]L[/math] называется множество [math]\{z \mid yz \in L\}[/math].


Утверждение:
Язык [math]L[/math] — регулярный [math]\Leftrightarrow[/math] множество [math]\{C_L^R(y) \mid y \in \sum^*\}[/math] его правых контекстов конечно

Левый

Определение:
Левым контекстом [math]C_L^L(y)[/math] слова [math]y[/math] в языке [math]L[/math] называется множество [math]\{z \mid zy \in L\}[/math].


Утверждение:
Язык [math]L[/math] — регулярный [math]\Leftrightarrow[/math] множество [math]\{C_L^L(y) \mid y \in \sum^*\}[/math] его левых контекстов конечно
[math]\triangleright[/math]
[math]C_L^L(y) = \overleftarrow{C_{\overleftarrow{L}}^R(\overleftarrow{y})}[/math]
[math]\triangleleft[/math]

Двухсторонний

Определение:
Двухсторонним контекстом [math]C_L(y)[/math] слова [math]y[/math] в языке [math]L[/math] называется множество [math]\{\langle x,z\rangle \mid xyz \in L\}[/math].


Теорема:
Язык [math]L[/math] — регулярный [math]\Leftrightarrow[/math] множество [math]\{C_L(y) \mid y \in \sum^*\}[/math] его двухсторонних контекстов конечно

Синтаксический моноид

Определение:
Синтаксическим моноидом языка [math]L[/math] называется множество его двухсторонних контекстов с введенной на нем операцией композиции [math]\circ[/math], где [math]C_L(y) \circ C_L(z) = C_L(yz)[/math]. Нейтральным элементом в нем является [math]C_L(\varepsilon)[/math]