Устранение левой рекурсии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм устранения произвольной левой рекурсии)
Строка 65: Строка 65:
 
<tex> {S_1} \Rightarrow \beta{S_1} | \alpha\gamma{S_1}</tex>
 
<tex> {S_1} \Rightarrow \beta{S_1} | \alpha\gamma{S_1}</tex>
  
 
 
 
Для произвольной грамматики <tex>\Gamma</tex> левую рекурсию можно устранить следующим образом:
 
#Воспользуемся [[Удаление_eps-правил_из_грамматики | алгоритмом удаления <tex> \varepsilon </tex>-правил]]. Получим грамматику без <tex> \varepsilon </tex>-правил для языка <tex>L(\Gamma) \setminus \lbrace \varepsilon \rbrace</tex>.
 
#Воспользуемся алгоритмом ''устранения произвольной левой рекурсии''.
 
#Если <tex>\varepsilon</tex> присутствовал в языке исходной грамматики, добавим новый начальный символ <tex>S'</tex> и правила <tex>S' \rightarrow S \, | \, \varepsilon </tex>.
 
  
 
==Литература==
 
==Литература==

Версия 20:23, 7 января 2013

Определение:
Говорят, что контекстно-свободная (КС) грамматика [math]\Gamma[/math] содержит непосредственную левую рекурсию, если она содержит правило вида [math]A \Rightarrow A\alpha[/math].


Определение:
Говорят, что КС-грамматика [math]\Gamma[/math] содержит левую рекурсию (left recursion), если в ней существует вывод вида [math]A \Rightarrow^* A\alpha[/math].


Методы нисходящего разбора (top-down parsers) не в состоянии работать с леворекурсивными грамматиками. Проблема в том, что продукция вида [math]A \Rightarrow^* A\alpha[/math] может применяться бесконечно долго, так и не выработав некий терминальный символ, который можно было бы сравнить со строкой. Поэтому требуется преобразование грамматики, которое бы устранило левую рекурсию.


Устранение непосредственной левой рекурсии

Опишем процедуру, устраняющую все правила вида [math]A \to A\alpha[/math], для фиксированного нетерминала [math]A[/math].

  1. Запишем все правила вывода из [math]A[/math] в виде: [math]A \to A\alpha_1\,|\,\ldots\,|\,A\alpha_n\,|\,\beta_1\,|\,\ldots\,|\,\beta_m [/math], где
    • [math]\alpha[/math] — непустая последовательность терминалов и нетерминалов ([math]\alpha \nrightarrow \varepsilon [/math]);
    • [math]\beta[/math] — непустая последовательность терминалов и нетерминалов, не начинающаяся с [math]A[/math].
  2. Заменим правила вывода из [math]A[/math] на [math]A \to\beta_1A^\prime\, |\, \ldots\, |\, \beta_mA^\prime \,|\, \beta_1 \,|\, \ldots \,|\, \beta_m[/math].
  3. Создадим новый нетерминал [math]{A^\prime} \to \alpha_1{A^\prime}, |\, \ldots\, |\, \alpha_n{A^\prime} | \alpha_1\, |\, \ldots\, |\, \alpha_n[/math].

Изначально нетерминал [math]A[/math] порождает сроки вида [math]\beta\alpha_{i0}\alpha_{i1} \ldots \alpha_{ik}[/math]. В новой грамматике нетерминал [math]A[/math] порождает [math]\beta{A^\prime}[/math], а [math]A^\prime[/math] порождает строки вида [math]\alpha_{i0}\alpha_{i1} \ldots \alpha_{ik}[/math]. Из этого очевидно, что изначальная грамматика эквивалентна новой.

Алгоритм устранения произвольной левой рекурсии

Пусть [math]N = \lbrace A_1, A_2, \ldots , A_n \rbrace[/math] — множество всех нетерминалов.

for все нетерминалы [math]A_i[/math] 
  for все нетерминалы [math]A_j[/math], такие, что [math] 1 \leq j \lt  i [/math] и 
    рассмотреть все правила вывода из [math]A_j[/math]: [math]A_j \to \delta_1 | \ldots | \delta_k[/math].
    заменить каждое правило [math]A_i \to A_j \gamma[/math] на [math]A_i \to \delta_1\gamma | \ldots | \delta_k\gamma[/math].
  устранить непосредственную левую рекурсию для [math]A_i[/math].

На [math]i[/math] итерации внешнего цикла все правила вида [math]A_i \to A_j \gamma[/math] где [math] j \lt i [/math] заменяются на [math]A_i \to \delta_1\gamma | \ldots | \delta_k\gamma[/math] где [math]A_j \to \delta_1 | \ldots | \delta_k[/math]. Таким образом остается только избавиться от непосредственной рекурсии для [math]A_i[/math]. Очевидно, что одна итерация алгоритма не меняет язык, а значит язык получившейся в итоге грамматики совпадает с исходным.


Алгоритм не работает для грамматик с [math]\varepsilon[/math] переходами и с грамматиками имеющими [math]A \Rightarrow^+ A[/math]. Поэтому для произвольной грамматики необходимо сначала воспользоваться алгоритмом алгоритмом удаления [math] \varepsilon [/math]-правил.

Пример

Дана грамматика

[math]A \Rightarrow S\alpha [/math]

[math]S \Rightarrow S\beta | A\gamma | b[/math]

Среди продукций [math]A[/math] непосредственной рекурсии нет, поэтому во время первой итерации внешнего цикла ничего не происходит. Во время второй итерации внешнего цикла продукция [math] S \Rightarrow A\gamma [/math] переходит в [math] S \Rightarrow S\alpha\gamma [/math].

Грамматика имеет вид

[math]A \Rightarrow S\alpha [/math]

[math]S \Rightarrow {S}{\beta} | {S}{\alpha}{\gamma} | \beta[/math]

Устраняем левую рекурсию для [math]S[/math]

[math] S \Rightarrow \beta{S_1}[/math]

[math] {S_1} \Rightarrow \beta{S_1} | \alpha\gamma{S_1}[/math]


Литература

  • Хопкрофт Д., Мотвани Р., Ульман Д.Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
  • Robert C. MooreRemoving Left Recursion from Context-Free Grammars