1679
правок
Изменения
общий вид функционала, например
{{TODO | t = осталось еще пять страниц конспекта }}
{{Теорема
|author=Рисс
|about=об общем виде линейного непрерывного функционала в гильбертовом пространстве
|statement=
<tex>\forall f \in H^*\; \exists ! y \in H : f(x) = \langle x, y \rangle</tex>, причем <tex>\|f\| = \|y\|</tex>
|proof=
<wikitex>
Покажем, что функционал, определенный как $g(x) = \langle x, y \rangle$ (для произвольного $y \in H$), — линейный и ограниченный, причем $\|g\| = \|y\|$.
* линейность тривиально получается из аксиом скалярного произведения
* для подсчета нормы применим [[нер-во Шварца]]: $|g(x)| = |\langle x, y \rangle| \le \| y\| \|x\|$, то есть $\|g\| \le \|y\|$. Однако на элементе ${y \over \|y\|}$, $g$ принимает значение, равное $\langle {y \over \|y\|}, y \rangle = {\langle y, y \rangle \over \|y\|} = {\|y\|^2 \over \|y\|} = \|y\|$. Таким образом, $\|g\|$ и есть $\|y\|$.
$\forall f \in H^*$ надо найти $y \in H: \forall x \in H: f(x) = \langle x, y \rangle$. Возьмем ядро функционала $\ker f$, оно замкнуто по непрерывности функционала и является подпространством $H$, обозначим его за $H_1$. По уже доказанному, коразмерность ядра равна 1, $H = H_1 \oplus H_1^{\perp}$ и существует $e \in H_1^{\perp}$, что у любого $x \in H$ существует единственное разложение $x = x_1 + t e, x_1 \in H_1$. Тогда $f(x) = f(x_1) + f(t e) = t f(e)$. $\forall y \in H_1^{\perp}: \langle x, y \rangle = \langle x_1 + te, y \rangle = \langle x_1, y\rangle + \langle te, y \rangle = t \langle e, y \rangle$. Добьемся того, чтобы $f(e)$ было равно $\langle e, y \rangle$: пусть $y = \alpha e$, тогда $\langle e, y \rangle = \alpha \|e\|^2 = f(e)$, то есть $\alpha = {f(e) \over \|e\|^2}$. Таким образом, искомый $y = {f(e) \over \|e\|^2} e$.
Единственность такого $y$: пусть существуют $y$ и $y'$ такие, что $f(x) = \langle x, y \rangle$ и $f(x) = \langle x, y' \rangle$. Тогда $\forall x: \langle x, y - y' \rangle = 0$, а из первой аксиомы скалярного произведения это означает, что $y - y' = 0$.
</wikitex>
}}