Произвольно вычерчиваемые из заданной вершины графы — различия между версиями
(Новая страница: «{{Определение |definition= Граф называется '''произвольно вычерчиваемым из вершины v''' ('''Arbitrarily tr…») |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Граф называется '''произвольно вычерчиваемым из вершины v''' ('''Arbitrarily traceable graph'''), если любая цепь с началом в вершине v может быть продолжена до эйлеровой цепи графа G. Разумеется, если граф произвольно вычерчиваем из вершины v, то он является эйлеровым графом. }} | + | Граф называется '''произвольно вычерчиваемым из вершины v''' (англ. '''Arbitrarily traceable graph'''), если любая цепь с началом в вершине v может быть продолжена до эйлеровой цепи графа G. Разумеется, если граф произвольно вычерчиваем из вершины v, то он является эйлеровым графом. }} |
{{Теорема | {{Теорема | ||
|statement= | |statement= |
Версия 06:37, 29 сентября 2010
Определение: |
Граф называется произвольно вычерчиваемым из вершины v (англ. Arbitrarily traceable graph), если любая цепь с началом в вершине v может быть продолжена до эйлеровой цепи графа G. Разумеется, если граф произвольно вычерчиваем из вершины v, то он является эйлеровым графом. |
Теорема: |
Неодноэлементный эйлеров граф G является произвольно вычерчиваемым из вершины v тогда и только тогда, когда вершина v принадлежит любому циклу графа G. |
Доказательство: |
Пусть вершина v эйлерова графа G принадлежит любому циклу. Рассмотрим произвольную (v, w)-цепь P и покажем, что её можно продолжить до эйлеровой цепи. Обозначим через |