Теоретический минимум по функциональному анализу за 5 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(4 Критерий компактности Хаусдорфа в МП.: я запиливаю теормин каждые 20 минут!)
(5 Пространство R^{\infty} : метрика, покоординатная сходимость.)
Строка 41: Строка 41:
  
 
= 5 Пространство <tex>R^{\infty}</tex> : метрика, покоординатная сходимость. =
 
= 5 Пространство <tex>R^{\infty}</tex> : метрика, покоординатная сходимость. =
 +
* <tex>X = \mathbb{R}^{\infty}</tex>. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: <tex>\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}</tex> (стандартный способ превратить в метрическое пространство счетное произведение метрических пространств, коим и является <tex>R^{\infty}</tex>). Проверим, что эта метрика удовлетворяет аксиомам:
 +
** этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией <tex>\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1</tex>, соответственно, расстояние ограничено единицей.
 +
** первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
 +
** вторая аксиома: еще очевиднее
 +
** третья аксиома легко вытекает из следующего утверждения:
 +
{{Утверждение
 +
|statement=<tex> {|x - z| \over 1 + |x - z|} \le {|x - y| \over 1 + |x - y|} + {|y - z| \over 1 + |y - z|}</tex>
 +
}}
 +
 +
{{Утверждение
 +
|statement=Сходимость в метрике <tex> \mathbb{R}^{\infty} </tex> эквивалентна покоординатной.
 +
}}
  
 
= 6 Норма в линейном множестве, определение предела по норме, арифметика предела. =
 
= 6 Норма в линейном множестве, определение предела по норме, арифметика предела. =

Версия 17:04, 11 января 2013

Содержание

1 Определение МП, замыкание в МП.

Определение:
Для некоторого множества [math]X[/math], отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
  1. [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника
Пару [math](X, \rho)[/math] называют метрическим пространством.


Определение:
Замыкание (closure) множества [math]A[/math] называется множество [math]\mathrm{Cl} A = \bigcap\limits_{A \subset F } F[/math], где [math] F [/math] — замкнутые множества.


2 Принцип вложенных шаров в полном МП.

Утверждение (принцип вложенных шаров):
Пусть [math](X, \rho)[/math] — полное. [math]\overline V_n[/math] — замкнутые шары. [math]\overline V_{n + 1} \subset \overline V_n[/math], [math]r_n \to 0[/math]. Тогда [math]\bigcap\limits_{n=1}^{\infty} \overline V_n \ne \emptyset[/math], и состоит из одной точки.

3 Теорема Бэра о категориях.

Теорема (Бэр):
Полное МП является множеством II категории в себе.

4 Критерий компактности Хаусдорфа в МП.

Теорема (Хаусдорф):
Пусть [math]X[/math] — полное метрическое пространство, [math]K \subset X[/math], [math]K[/math] — замкнуто. Тогда [math]K[/math] — компакт [math]\iff[/math] [math]K[/math] — вполне ограниченно.

5 Пространство [math]R^{\infty}[/math] : метрика, покоординатная сходимость.

  • [math]X = \mathbb{R}^{\infty}[/math]. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: [math]\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}[/math] (стандартный способ превратить в метрическое пространство счетное произведение метрических пространств, коим и является [math]R^{\infty}[/math]). Проверим, что эта метрика удовлетворяет аксиомам:
    • этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией [math]\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1[/math], соответственно, расстояние ограничено единицей.
    • первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
    • вторая аксиома: еще очевиднее
    • третья аксиома легко вытекает из следующего утверждения:
Утверждение:
[math] {|x - z| \over 1 + |x - z|} \le {|x - y| \over 1 + |x - y|} + {|y - z| \over 1 + |y - z|}[/math]
Утверждение:
Сходимость в метрике [math] \mathbb{R}^{\infty} [/math] эквивалентна покоординатной.

6 Норма в линейном множестве, определение предела по норме, арифметика предела.

7 Эквивалентность норм в конечномерном НП.

8 Замкнутость конечномерного линейного подмножества НП.

9 Лемма Рисса о почти перпендикуляре, пример ее применения.

10 Банаховы пространства на примерах [math]C [0,1][/math] и [math]L_p(E)[/math].

11 Определение скалярного произведения, равенство параллелограмма, неравенство Шварца.

12 Наилучшее приближение в НП в случае конечномерного подпространства.

13 Наилучшее приближение в унитарном пространстве, неравенство Бесселя.

14 Определение Гильбертова пространства, сепарабельность и полнота.

15 Теорема Рисса-Фишера, равенство Парсеваля.

16 Наилучшее приближение в [math]H[/math] для случая выпуклого,замкнутого множества, [math]H = H_1 \oplus H_2[/math].

17 Счетно-нормированные пространства, метризуемость.

18 Условие нормируемости СНТП.

19 Функционал Минковского.

20 Топология векторных пространств.

21 Теорема Колмогорова о нормируемости ТВП.

22 Коразмерность ядра линейного функционала.

23 Непрерывный линейный функционал и его норма.

24 Связь между непрерывностью линейного функционала и замкнутостью его ядра.

25 Продолжение по непрерывности линейного функционала со всюду плотного линейного подмножества НП.

26 Теорема Хана-Банаха для НП (сепарабельный случай).

27 Два следствия из теоремы Хана-Банаха.

28 Теорема Рисса об общем виде линейного непрерывного функционала в [math]H[/math].

29 Непрерывный линейный оператор и его норма.

30 Продолжение линейного оператора по непрерывности.

31 Полнота пространства [math]L(X,Y)[/math].

32 Теорема Банаха-Штейнгауза.

33 Условие замкнутости множества значений линейного оператора на базе априорной оценки решения операторного уравнения.

34 Условие непрерывной обратимости лин. оператора.

35 Теорема Банаха о непрерывной обратимости [math]I-C[/math].

36 Лемма о множествах [math]X_n = {||Ax|| \lt n ||x||}[/math].

37 Теорема Банаха об обратном операторе.

38 Теорема о замкнутом графике.

39 Теорема об открытом отображении.

40 Теорема о резольвентном множестве.

41 Теорема о спектральном радиусе.

42 Аналитичность резольвенты.

43 Непустота спектра ограниченного оператора.