Алгоритм Краскала — различия между версиями
(→Идея) |
Alex z (обсуждение | вклад) (добавленн пример) |
||
Строка 12: | Строка 12: | ||
2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством <tex>V</tex>.<br> | 2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством <tex>V</tex>.<br> | ||
3) Перебирая ребра <tex>uv \in EG</tex> в порядке увеличения веса, смотрим, принадлежат ли <tex>u</tex> и <tex>v</tex> одному множеству. Если нет, то объединяем множества, в которых лежат <tex>u</tex> и <tex>v</tex>, и добавляем ребро <tex>uv</tex> к <tex>F</tex>.<br> | 3) Перебирая ребра <tex>uv \in EG</tex> в порядке увеличения веса, смотрим, принадлежат ли <tex>u</tex> и <tex>v</tex> одному множеству. Если нет, то объединяем множества, в которых лежат <tex>u</tex> и <tex>v</tex>, и добавляем ребро <tex>uv</tex> к <tex>F</tex>.<br> | ||
+ | |||
+ | ==Пример== | ||
+ | |||
+ | Отсортируем рёбра по их весам и рассмотрим их в порядке возрастания. | ||
+ | {| border = 1 cellspacing = 2 cellpadding = 5 class = "wikitable" | ||
+ | | Рёбра ''(в порядке их просмотра)'' || ae || cd || ab || be || bc || ec || ed | ||
+ | |- | ||
+ | | Веса рёбер ||<tex>1</tex> || <tex>2</tex> || <tex>3</tex> || <tex>4</tex> || <tex>5</tex> || <tex>6</tex> || <tex>7</tex> | ||
+ | |} | ||
+ | |||
+ | {| border = 1 cellspacing = 2 cellpadding = 5 class = "wikitable" | ||
+ | ! Изображение !! Описание | ||
+ | |- | ||
+ | |[[Файл:Mst_kruskal_1.png|200px]] | ||
+ | |Первое ребро, которое будет рассмотрено - '''ae''', так как его вес минимальный.<br/> | ||
+ | Добавим его к ответу, так как его концы соединяют вершины из разных множеств ('''a''' - красное и '''e''' -зелёное).<br/> | ||
+ | Объединим красное и зелёное множество в одно (красное), так как теперь они соединены ребром. | ||
+ | |- | ||
+ | |[[Файл:Mst_kruskal_2.png|200px]] | ||
+ | |Рассмотрим следующие ребро - '''cd'''.<br/> | ||
+ | Добавим его к ответу, так как его концы соединяют вершины из разных множеств ('''c''' - синие и '''d''' - голубое).<br/> | ||
+ | Объединим синие и голубое множество в одно (синие), так как теперь они соединены ребром. | ||
+ | |- | ||
+ | |[[Файл:Mst_kruskal_3.png|200px]] | ||
+ | |Дальше рассмотрим ребро '''ab'''.<br/> | ||
+ | Добавим его к ответу, так как его концы соединяют вершины из разных множеств ('''a''' - красное и '''b''' - розовое).<br/> | ||
+ | Объединим красное и розовое множество в одно (красное), так как теперь они соединены ребром. | ||
+ | |- | ||
+ | |[[Файл:Mst_kruskal_4.png|200px]] | ||
+ | |Рассмотрим следующие ребро - '''be'''.<br/> | ||
+ | Оно соединяет вершины из одного красного множества, поэтому перейдём к следующему ребру '''bc'''<br/> | ||
+ | Добавим его к ответу, так как его концы соединяют вершины из разных множеств ('''b''' - красное и '''c''' - синие).<br/> | ||
+ | Объединим красное и синие множество в одно (красное), так как теперь они соединены ребром. | ||
+ | |- | ||
+ | |[[Файл:Mst_kruskal_5.png|200px]] | ||
+ | |Теперь рёбра '''ec''' и '''ed''' соединяют вершины из одного красного множества.<br/> | ||
+ | Всё рёбра были рассмотрены, поэтому алгоритм завершает работу.<br/> | ||
+ | Полученный граф - минимальное остовное дерево | ||
+ | |} | ||
==Асимптотика== | ==Асимптотика== |
Версия 23:00, 11 января 2013
Алгоритм Краскала — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе.
Содержание
[убрать]Идея
Будем последовательно строить подграф разрез такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа - вторую. Тогда и есть минимальное ребро, пересекающее этот разрез. Значит, из леммы о безопасном ребре следует, что можно продолжить до MST, поэтому добавим это ребро в .
Несложно понять, что после выполнения такой процедуры получится остовное дерево, при этом его минимальность вытекает из леммы о безопасном ребре.
Реализация
Вход: граф
Выход: минимальный остов графа
1)
1) Отсортируем по весу ребер.
2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством .
3) Перебирая ребра в порядке увеличения веса, смотрим, принадлежат ли и одному множеству. Если нет, то объединяем множества, в которых лежат и , и добавляем ребро к .
Пример
Отсортируем рёбра по их весам и рассмотрим их в порядке возрастания.
Рёбра (в порядке их просмотра) | ae | cd | ab | be | bc | ec | ed |
Веса рёбер |
Асимптотика
Сортировка
Работа с DSU займет , где - обратная функция Аккермана, которая не превосходит 4 во всех практических приложениях и которую можно принять за константу.
Алгоритм работает за .
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)