Теоретический минимум по функциональному анализу за 5 семестр — различия между версиями
(→5 Пространство R^{\infty} : метрика, покоординатная сходимость.) |
(→6 Норма в линейном множестве, определение предела по норме, арифметика предела.) |
||
Строка 55: | Строка 55: | ||
= 6 Норма в линейном множестве, определение предела по норме, арифметика предела. = | = 6 Норма в линейном множестве, определение предела по норме, арифметика предела. = | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: | ||
+ | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \Leftrightarrow x = \mathrm{0}</tex> | ||
+ | # <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> | ||
+ | # <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> | ||
+ | Пространство с введенной на нем нормой называют '''нормированным пространством'''. | ||
+ | }} | ||
+ | |||
+ | В нормированных пространствах определение предела записывается аналогично пределу вещественной последовательности, отличаясь лишь заменой знака модуля на знак нормы. | ||
+ | |||
+ | Например, если <tex>E \subset X</tex>, <tex>a</tex> — предельная точка множества <tex>E</tex>, <tex>f \colon E \to Y</tex> (где <tex>X</tex> и <tex>Y</tex> — нормированные пространства), то <tex>A</tex> называется пределом функции <tex>f</tex> при <tex>x \rightarrow a</tex> и обозначается <tex>\lim\limits_{x \rightarrow a} f(x)</tex>, если для любого положительного <tex>\varepsilon</tex> найдётся <tex>\delta > 0</tex>, для которого выполняется следствие <tex>0 < \|x - a\| < \delta \Rightarrow \|f(x) - A\| < \varepsilon</tex>. | ||
+ | |||
+ | Специфика нормированных пространств — структура линейного пространства на рассматриваемом множестве. То есть, точки пространства можно складывать и умножать на числа, и эти операции будут непрерывными по норме пространства. | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Пусть <tex>x_n</tex>, <tex>y_n</tex> — последовательности точек нормированного пространства <tex>(X, \|\cdot\|)</tex>, а <tex>\alpha_n</tex> — вещественная последовательность. Известно, что <tex>x_n \rightarrow x</tex>, <tex>y_n \rightarrow y</tex>, <tex>\alpha_n \rightarrow \alpha</tex>. | ||
+ | |||
+ | Тогда: | ||
+ | # <tex>x_n + y_n \rightarrow x + y</tex> | ||
+ | # <tex>\alpha_n x_n \rightarrow \alpha x</tex> | ||
+ | # <tex>\|x_n\| \rightarrow \|x\|</tex> | ||
+ | |||
+ | |proof= | ||
+ | 1) По определению предела в метрических пространствах, <tex>x_n \rightarrow x \iff \|x_n - x\| \rightarrow 0</tex>. | ||
+ | |||
+ | <tex>\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\| \rightarrow 0</tex> по арифметике числовых пределов. Но, поскольку <tex>\|(x_n + y_n) - (x + y)\| \ge 0</tex> по определению нормы, то по принципу сжатой переменной <tex>x_n + y_n \rightarrow x + y</tex>. | ||
+ | |||
+ | 2) Пусть <tex> \alpha_n = \alpha + \Delta \alpha_n </tex>, <tex> x_n = x + \Delta x_n </tex>; <tex>\Delta \alpha_n, \Delta x_n</tex> стремятся к нулю при <tex> n \rightarrow \infty </tex>. | ||
+ | |||
+ | Тогда <tex> \| \alpha_n x_n - \alpha x \| = \| (\alpha + \Delta \alpha_n) (x + \Delta x_n) - \alpha x \| = </tex> | ||
+ | |||
+ | <tex> = \| \alpha \Delta x_n + \Delta \alpha_n x + \Delta \alpha_n \Delta x_n \| \le \| \alpha \Delta x_n \| + \| \Delta \alpha_n x \| + \| \Delta \alpha_n \Delta x_n \| \rightarrow 0</tex>. | ||
+ | |||
+ | 3) <tex>\|x_n\| = \|x + (x_n - x)\| \le \|x\| + \|x_n - x\| \Rightarrow \|x_n\| - \|x\| \le \|x_n - x\| </tex> | ||
+ | |||
+ | Аналогично, <tex> \|x\| - \|x_n\| \le \|x_n - x\| </tex>. | ||
+ | |||
+ | Значит, <tex> \left|\|x_n\| - \|x\|\right| \le \|x_n - x\| </tex>, при <tex> \|x_n - x\| \rightarrow 0 \quad \left|\|x_n\| - \|x\|\right| \rightarrow 0</tex>, что и требовалось доказать. | ||
+ | }} | ||
+ | |||
= 7 Эквивалентность норм в конечномерном НП. = | = 7 Эквивалентность норм в конечномерном НП. = | ||
= 8 Замкнутость конечномерного линейного подмножества НП. = | = 8 Замкнутость конечномерного линейного подмножества НП. = |
Версия 16:17, 12 января 2013
Содержание
- 1 1 Определение МП, замыкание в МП.
- 2 2 Принцип вложенных шаров в полном МП.
- 3 3 Теорема Бэра о категориях.
- 4 4 Критерий компактности Хаусдорфа в МП.
- 5 5 Пространство [math]R^{\infty}[/math] : метрика, покоординатная сходимость.
- 6 6 Норма в линейном множестве, определение предела по норме, арифметика предела.
- 7 7 Эквивалентность норм в конечномерном НП.
- 8 8 Замкнутость конечномерного линейного подмножества НП.
- 9 9 Лемма Рисса о почти перпендикуляре, пример ее применения.
- 10 10 Банаховы пространства на примерах [math]C [0,1][/math] и [math]L_p(E)[/math].
- 11 11 Определение скалярного произведения, равенство параллелограмма, неравенство Шварца.
- 12 12 Наилучшее приближение в НП в случае конечномерного подпространства.
- 13 13 Наилучшее приближение в унитарном пространстве, неравенство Бесселя.
- 14 14 Определение Гильбертова пространства, сепарабельность и полнота.
- 15 15 Теорема Рисса-Фишера, равенство Парсеваля.
- 16 16 Наилучшее приближение в [math]H[/math] для случая выпуклого,замкнутого множества, [math]H = H_1 \oplus H_2[/math].
- 17 17 Счетно-нормированные пространства, метризуемость.
- 18 18 Условие нормируемости СНТП.
- 19 19 Функционал Минковского.
- 20 20 Топология векторных пространств.
- 21 21 Теорема Колмогорова о нормируемости ТВП.
- 22 22 Коразмерность ядра линейного функционала.
- 23 23 Непрерывный линейный функционал и его норма.
- 24 24 Связь между непрерывностью линейного функционала и замкнутостью его ядра.
- 25 25 Продолжение по непрерывности линейного функционала со всюду плотного линейного подмножества НП.
- 26 26 Теорема Хана-Банаха для НП (сепарабельный случай).
- 27 27 Два следствия из теоремы Хана-Банаха.
- 28 28 Теорема Рисса об общем виде линейного непрерывного функционала в [math]H[/math].
- 29 29 Непрерывный линейный оператор и его норма.
- 30 30 Продолжение линейного оператора по непрерывности.
- 31 31 Полнота пространства [math]L(X,Y)[/math].
- 32 32 Теорема Банаха-Штейнгауза.
- 33 33 Условие замкнутости множества значений линейного оператора на базе априорной оценки решения операторного уравнения.
- 34 34 Условие непрерывной обратимости лин. оператора.
- 35 35 Теорема Банаха о непрерывной обратимости [math]I-C[/math].
- 36 36 Лемма о множествах [math]X_n = {||Ax|| \lt n ||x||}[/math].
- 37 37 Теорема Банаха об обратном операторе.
- 38 38 Теорема о замкнутом графике.
- 39 39 Теорема об открытом отображении.
- 40 40 Теорема о резольвентном множестве.
- 41 41 Теорема о спектральном радиусе.
- 42 42 Аналитичность резольвенты.
- 43 43 Непустота спектра ограниченного оператора.
1 Определение МП, замыкание в МП.
Определение: |
Для некоторого множества
| , отображение — называется метрикой на , если выполняются аксиомы
Определение: |
Замыкание (closure) множества | называется множество , где — замкнутые множества.
2 Принцип вложенных шаров в полном МП.
Утверждение (принцип вложенных шаров): |
Пусть — полное. — замкнутые шары. , . Тогда , и состоит из одной точки. |
3 Теорема Бэра о категориях.
Теорема (Бэр): |
Полное МП является множеством II категории в себе. |
4 Критерий компактности Хаусдорфа в МП.
Теорема (Хаусдорф): |
Пусть — полное метрическое пространство, , — замкнуто.
Тогда — компакт — вполне ограниченно. |
5 Пространство : метрика, покоординатная сходимость.
-
- этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией , соответственно, расстояние ограничено единицей.
- первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
- вторая аксиома: еще очевиднее
- третья аксиома легко вытекает из следующего утверждения:
. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: (стандартный способ превратить в метрическое пространство счетное произведение метрических пространств, коим и является ). Проверим, что эта метрика удовлетворяет аксиомам:
Утверждение: |
Утверждение: |
Сходимость в метрике эквивалентна покоординатной. |
6 Норма в линейном множестве, определение предела по норме, арифметика предела.
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
В нормированных пространствах определение предела записывается аналогично пределу вещественной последовательности, отличаясь лишь заменой знака модуля на знак нормы.
Например, если
, — предельная точка множества , (где и — нормированные пространства), то называется пределом функции при и обозначается , если для любого положительного найдётся , для которого выполняется следствие .Специфика нормированных пространств — структура линейного пространства на рассматриваемом множестве. То есть, точки пространства можно складывать и умножать на числа, и эти операции будут непрерывными по норме пространства.
Утверждение: |
Пусть , — последовательности точек нормированного пространства , а — вещественная последовательность. Известно, что , , .
Тогда: |
1) По определению предела в метрических пространствах, .по арифметике числовых пределов. Но, поскольку по определению нормы, то по принципу сжатой переменной . 2) Пусть , ; стремятся к нулю при .Тогда . 3) Аналогично, Значит, . , при , что и требовалось доказать. |