Изменения

Перейти к: навигация, поиск

Эквивалентность состояний ДКА

452 байта добавлено, 07:42, 30 сентября 2010
Эквивалентность автоматов
<font face="Times" size="3">
*'''Определение: ''' Два <em> автомата</em> <tex>\mathcal{A}_1(Q_1,\Sigma,\delta_1,s_10, T_1\subset subseteq Q_1)</tex> и <tex>\mathcal{A}_2(Q_2,\Sigma,\delta_2,s_20, T_2\subset subseteq Q_2)</tex> называются <em>эквивалентными</em>, если они распознают один и тот же язык над алфавитом <tex>\Sigma</tex>.*'''Определение: ''' Два <em> состояния</em> <tex>s_i</tex> и <tex>s_j</tex> называются <em>эквивалентными</em> <tex>(s_i \sim s_j)</tex>, если <tex>\forall z\in \Sigma^*</tex> верно, что <tex>\delta(s_i, z)\in T \Leftrightarrow \delta(s_j, z)\in T</tex>. Из этого следует, что если два состояния <tex>s_i</tex> и <tex>s_j</tex> эквивалентны, то и состояния <tex>\delta_1(s_i, a)</tex> и <tex>\delta_2(s_j, a)</tex> будут эквивалентными для <tex>\forall a \in \Sigma</tex>. Кроме того, т.к. переход <tex>\delta(s, \varepsilon)</tex> может возникнуть только для конечного состояния <tex>s</tex>, то никакое допускающее(терминальное) состояние не может быть эквивалентно не допускающему состоянию. Нахождение пар классов эквивалентных состояний внутри автомата и их совмещение в одно состояние используется в алгоритмах быстром алгоритме Хопкрофта для минимизации автомата, работающий за <tex>O(n \log n)</tex>.*'''Определение:''' Слово <tex>z \in \Sigma^*</tex> различает два состояния <tex>(s_i \nsim s_j)</tex>, если <tex>\delta(s_i, z)\in T \Leftrightarrow \delta(s_j, z)\notin T</tex>. Также, если слово <tex>z</tex> различает состояния <tex>t_1</tex> и <tex>t_2</tex> такие, что <tex>t_1=\delta(q_1, a)</tex> и <tex>t_2=\delta(q_2, a)</tex>, то слово <tex>aw</tex> различает состояния <tex>q_1</tex> и <tex>q_2</tex>. Нахождение пар различных состояний в автомате также используется для в алгоритме минимизации автомата, работающий за <tex>O(n^2)</tex>.  
</font>
Анонимный участник

Навигация