Обсуждение:Нормированные пространства (3 курс) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(норма для R^infty)
м
Строка 4: Строка 4:
 
::: А тебе для чего-то понадобилось? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 15:10, 7 января 2013 (GST)
 
::: А тебе для чего-то понадобилось? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 15:10, 7 января 2013 (GST)
 
::: <wikitex>И, кстати, я правильно понимаю, что надо доказать что-то вроде "если нормы не эквивалентны, то найдется последовательность, которая по одной норме сходится, а по другой нет?". Тогда вроде все просто, действуем по определению, пусть $\|\|_1$ и $\|\|_2$ не эквивалентны, тогда для любого $n$ найдется $x_n$ такой, что $\|x_n\|_1 > n \|x_n\|_2$. Теперь рассмотрим последовательность $\frac{x_n}{\|x_n\|_1}$, по первой норме она сходится к 1, а по второй норме — к 0</wikitex>. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 10:19, 13 января 2013 (GST)
 
::: <wikitex>И, кстати, я правильно понимаю, что надо доказать что-то вроде "если нормы не эквивалентны, то найдется последовательность, которая по одной норме сходится, а по другой нет?". Тогда вроде все просто, действуем по определению, пусть $\|\|_1$ и $\|\|_2$ не эквивалентны, тогда для любого $n$ найдется $x_n$ такой, что $\|x_n\|_1 > n \|x_n\|_2$. Теперь рассмотрим последовательность $\frac{x_n}{\|x_n\|_1}$, по первой норме она сходится к 1, а по второй норме — к 0</wikitex>. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 10:19, 13 января 2013 (GST)
 +
:::: Не, не понадобилось, просто я подумал и решил, что это как-то неестественно, если определения не эквивалентны. Да, твое доказательство верно, сейчас добавлю его в статью. --[[Участник:Sementry|Мейнстер Д.]] 21:26, 13 января 2013 (GST)
  
 
TODO: сначала надо что-то сказать про изоморфность конечномерных пространств, чтоли?
 
TODO: сначала надо что-то сказать про изоморфность конечномерных пространств, чтоли?

Версия 20:26, 13 января 2013

Это определение равносильно тому, что сходимость последовательностей в них равносильна: $x_n \xrightarrow[]{\|\|_1} x \Leftrightarrow x_n \xrightarrow[]{\|\|_2} x$. Несложно показать, что из взаимной ограниченности норм следует равносходимость. В обратную сторону: ???.

А у меня в конспекте ничего не сказано про равносильность определений, более того, подозреваю, что это неверно. --Мейнстер Д. 01:02, 5 января 2013 (GST)
UPD: видимо, равносильность все же должна быть. Но я пока не понимаю, как ее доказать. Может, кто-нибудь сделает это? --Мейнстер Д. 07:43, 7 января 2013 (GST)
А тебе для чего-то понадобилось? --Дмитрий Герасимов 15:10, 7 января 2013 (GST)
<wikitex>И, кстати, я правильно понимаю, что надо доказать что-то вроде "если нормы не эквивалентны, то найдется последовательность, которая по одной норме сходится, а по другой нет?". Тогда вроде все просто, действуем по определению, пусть $\|\|_1$ и $\|\|_2$ не эквивалентны, тогда для любого $n$ найдется $x_n$ такой, что $\|x_n\|_1 > n \|x_n\|_2$. Теперь рассмотрим последовательность $\frac{x_n}{\|x_n\|_1}$, по первой норме она сходится к 1, а по второй норме — к 0</wikitex>. --Дмитрий Герасимов 10:19, 13 января 2013 (GST)
Не, не понадобилось, просто я подумал и решил, что это как-то неестественно, если определения не эквивалентны. Да, твое доказательство верно, сейчас добавлю его в статью. --Мейнстер Д. 21:26, 13 января 2013 (GST)

TODO: сначала надо что-то сказать про изоморфность конечномерных пространств, чтоли?

WAT? Вроде бы, все согласуется с определением конечномерного пространства, возможно, я чего-то не понял, но пока удолил --Мейнстер Д. 01:02, 5 января 2013 (GST)

аппроксимационная теорема Вейерштрасса (Стоуна-Вейерштрасса)

Может быть, можно как-то воспользоваться следствием и очень просто доказать ее, но в моем конспекте она вообще не упомянута. --Мейнстер Д. 01:12, 5 января 2013 (GST)

UPD: Похоже, речь шла о том, что в теореме Вейерштрасса максимальная степень полинома не ограничена, и пространство вообще всех полиномов замкнутым не является, но это — так, маловажное замечание. --Мейнстер Д. 04:08, 5 января 2013 (GST)

норма для R^infty

"не существует нормы, аналогичной по сходимости с этой метрикой."

почему? --Дмитрий Герасимов 09:52, 13 января 2013 (GST)
Допустим, это можно сделать, тогда [math] \|x\| = \rho(0, x) = \sum\limits_{k=1}^{\infty} 2^{-k} \frac {|x_k|} {1 + |x_k|} [/math], ну и дальше понятно, что там однородность поедет. --Мейнстер Д. 21:15, 13 января 2013 (GST)

компактность единичной сферы в норме \|\|_2

Нужна для доказательства теоремы Рисса. Мы это где-то доказывали? Если нет, я правильно понимаю, что надо сказать, что пространство полное по метрике, индуцированной этой нормой, замкнутость сферы очевидна, вполне ограниченность тоже, ну и тогда по теореме кого-то там (точно была) — это компакт? --Дмитрий Герасимов 10:47, 13 января 2013 (GST)