Вычислимые числа — различия между версиями
Sementry (обсуждение | вклад) м |
Sementry (обсуждение | вклад) м |
||
| Строка 181: | Строка 181: | ||
<tex>\Rightarrow</tex>: | <tex>\Rightarrow</tex>: | ||
| − | + | По определению <tex> \alpha </tex>, множество <tex> A = \{ a \in \mathbb Q \mid a < \alpha \} </tex> перечислимо. Кроме того, <tex> \sup A = \alpha </tex>. | |
| + | |||
| + | По определению нижней грани, <tex> \forall \varepsilon > 0\ \exists x_\varepsilon \in A: \varepsilon > \alpha - x_\varepsilon </tex>. Тогда можно взять, например, последовательность <tex> a_n = x_{\frac 1 n} </tex>. | ||
<tex>\Leftarrow</tex>: | <tex>\Leftarrow</tex>: | ||
| Строка 201: | Строка 203: | ||
Обозначим множества <tex> \{a \in \mathbb Q \mid a < \alpha \} </tex> и <tex> \{a \in \mathbb Q \mid a > \alpha \} </tex> за <tex> A </tex> и <tex> B </tex> соответственно. | Обозначим множества <tex> \{a \in \mathbb Q \mid a < \alpha \} </tex> и <tex> \{a \in \mathbb Q \mid a > \alpha \} </tex> за <tex> A </tex> и <tex> B </tex> соответственно. | ||
| − | Если <tex> \alpha </tex> рационально, то необходимые (полу) | + | Если <tex> \alpha </tex> рационально, то необходимые (полу)разрешители строятся тривиально. |
В противном случае, так как <tex> B = \mathbb Q \setminus A</tex>, то перечислимость множеств <tex> A </tex> и <tex> B </tex> равносильна разрешимости множества <tex> A </tex>, которая, в свою очередь, равносильна вычислимости <tex> \alpha </tex>. | В противном случае, так как <tex> B = \mathbb Q \setminus A</tex>, то перечислимость множеств <tex> A </tex> и <tex> B </tex> равносильна разрешимости множества <tex> A </tex>, которая, в свою очередь, равносильна вычислимости <tex> \alpha </tex>. | ||
| Строка 208: | Строка 210: | ||
== Последовательность Шпеккера == | == Последовательность Шпеккера == | ||
| − | + | Множество всех программ счетно, поэтому множество вычислимых чисел также счетно. Однако, множество вещественных чисел несчетно, значит, существуют невычислимые вещественные числа. Построим явно пример такого числа. | |
{{Определение | {{Определение | ||
| Строка 225: | Строка 227: | ||
Допустим теперь, что <tex> q </tex> вычислимо. | Допустим теперь, что <tex> q </tex> вычислимо. | ||
| − | Пусть <tex> A = \{p \mid p(p) = 1\}</tex>. Рассмотрим двоичную запись числа <tex> q </tex>, если ее <tex> n </tex>-ный знак после запятой равен 1, то <tex> n \in A </tex>, иначе {{---}} <tex> n \notin A </tex>. Мы построили | + | Пусть <tex> A = \{p \mid p(p) = 1\}</tex>. Рассмотрим двоичную запись числа <tex> q </tex>, если ее <tex> n </tex>-ный знак после запятой равен 1, то <tex> n \in A </tex>, иначе {{---}} <tex> n \notin A </tex>. Мы построили разрешитель для множества <tex> A </tex>. Тем не менее, мы знаем, что <tex> A </tex> {{---}} неразрешимое множество, и это невозможно, значит, <tex> q </tex> невычислимо. |
}} | }} | ||
== Ссылки == | == Ссылки == | ||
* ''Верещагин Н. К., Шень А.'' Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 14 | * ''Верещагин Н. К., Шень А.'' Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 14 | ||
| − | * http://en.wikipedia.org/wiki/Computable_number | + | * [http://en.wikipedia.org/wiki/Computable_number| Computable number] |
| − | * http://en.wikipedia.org/wiki/Specker_sequence | + | * [http://en.wikipedia.org/wiki/Specker_sequence| Specker sequence] |
[[Категория: Теория вычислимости]] | [[Категория: Теория вычислимости]] | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
Версия 01:56, 14 января 2013
В математике натуральные, целые и рациональные числа являются конструктивными объектами, поэтому их использование в теории вычислимости не требует особых уточнений. В то же время, действительные числа, которые необходимы для применения методов математического анализа, определяются неконструктивно. Предложенный далее метод позволяет построить конструктивные объекты, во многом схожие с обычными действительными числами.
Содержание
Вычислимые числа
| Определение: |
| Действительное число называется вычислимым (computable number), если существует вычислимая функция , такая, что для любого рационального . |
Свойства
| Теорема: |
Число вычислимо тогда и только тогда, когда множество разрешимо. |
| Доказательство: |
|
: Если — рациональное, то существует тривиальный разрешитель для , который просто сравнивает полученный элемент с . В противном случае, построим разрешитель для : : for : if : return 1 if : return 0 : Построим функцию : : for : if : return xТак как разрешимо, и для любого проверка в условном операторе завершается за конечное время, то функция вычислима для любого рационального . |
Важное замечание: построенное нами доказательство неконструктивно, так как мы не знаем наперед, рационально ли число , и уж тем более не пытаемся понять в случае его рациональности, чему именно оно равно. Но, так как мы ставим целью исследование свойств вычислимых чисел, а не явное построение соответствующих этим свойствам программ, то нам это доказательство полностью подходит.
С учетом только что доказанной теоремы, далее при проверке на принадлежность числа множеству будем писать просто .
| Теорема: |
Число вычислимо тогда и только тогда, когда последовательность знаков представляющей его двоичной записи вычислима. |
| Доказательство: |
|
: Если число — рациональное, то необходимую последовательность можно получить, воспользовавшись стандартным алгоритмом перевода числа в двоичную систему счисления. Рассмотрим случай, когда . Очевидно, двоичная запись целой части всегда вычислима (так как множество чисел, меньших , разрешимо, то можно перебрать все целые числа в порядке возрастания их абсолютных величин и найти наибольшее число, меньшее ), поэтому будем считать, что . Напишем программу, которая по числу вычисляет -ный знак числа после запятой: : l = 0, r = 1 for : if : l = m, t = 1 else: r = m, t = 0 return t : Для любого рационального , найдем , тогда в качестве значения функции можно взять часть последовательности знаков двоичной записи с знаками после запятой. |
| Определение: |
| Последовательность рациональных чисел вычислимо сходится к , если существует вычислимая функция , такая, что для любого рационального выполняется . |
| Теорема: |
Число вычислимо тогда и только тогда, когда существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к . |
| Доказательство: |
|
: Так как вычислимо, то, согласно предыдущей теореме, вычислима и его двоичная запись. Пусть — часть последовательности знаков двоичной записи с знаками после запятой. Данная последовательность вычислима, а также вычислимо сходится к , так как . : Пусть , тогда вычислимо по определению. |
| Теорема: |
Пусть числа вычислимы. Тогда также вычислимы числа , , и . |
| Доказательство: |
|
В пределах этого доказательства будем обозначать функцию-приближение для произвольного вычислимого числа как . Для того, чтобы получить приближение для результата операции, нам нужно выразить функцию-результат через приближения для операндов. Заметим, что , для произвольных рациональных , значит, в качестве необходимых функций для и можно взять
и
соответственно (при подстановке в неравенство и вместо и каждый модуль в правой части не превосходит , поэтому, не превосходит ). Далее, так как , где (, очевидно, можно найти за конечное время), то . Убедимся в вычислимости числа : , где . . Отсюда, также вычислимо. |
| Теорема: |
Корень многочлена с вычислимыми коэффициентами вычислим. |
| Доказательство: |
|
Пусть — корень многочлена с вычислимыми коэффициентами. Если , то его можно найти точно, перебрав все рациональные числа. Иначе, выберем некоторый интервал ( — вычислимы), достаточно малый, чтобы полином был монотонным на отрезках и . Заметим, что для вычислимого значение также вычислимо, так как в процессе его вычисления используются только операции, вычислимость значений которых уже была ранее доказана. Теперь, если полином имеет разные знаки на отрезках и , то для поиска можно воспользоваться двоичным поиском для поиска нуля на , иначе — троичным поиском для поиска минимума или максимума на . Останавливая тот или иной алгоритм, когда текущая длина интервала становится меньше и возвращая левую границу в качестве ответа, получаем функцию . |
| Теорема: |
Предел вычислимо сходящейся вычислимой последовательности вычислимых чисел вычислим. |
| Доказательство: |
|
Пусть рассматриваемая последовательность — , и . Запишем формально данные нам условия:
Здесь функции , и все вычислимы. Построим функцию , которая дает приближение к с точностью до : : n = returnТак как , первое слагаемое меньше по выбору , второе — в силу вычислимости , то , и действительно вычисляет требуемое приближение. |
Перечислимые числа
| Определение: |
| Действительное число называется перечислимым снизу (recursively enumerable number), если множество перечислимо. |
| Определение: |
| Действительное число называется перечислимым сверху, если множество перечислимо. |
Свойства
| Теорема: |
Число перечислимо снизу тогда и только тогда, когда существует вычислимая возрастающая последовательность рациональных чисел, пределом которой является . |
| Доказательство: |
|
: По определению , множество перечислимо. Кроме того, . По определению нижней грани, . Тогда можно взять, например, последовательность . : Построим полуразрешитель для множества : p(x): for n in : if : return 1Если , то , и так как , то программа вернет ответ при . |
| Теорема: |
Число вычислимо тогда и только тогда, когда оно перечислимо сверху и снизу. |
| Доказательство: |
|
Обозначим множества и за и соответственно. Если рационально, то необходимые (полу)разрешители строятся тривиально. В противном случае, так как , то перечислимость множеств и равносильна разрешимости множества , которая, в свою очередь, равносильна вычислимости . |
Последовательность Шпеккера
Множество всех программ счетно, поэтому множество вычислимых чисел также счетно. Однако, множество вещественных чисел несчетно, значит, существуют невычислимые вещественные числа. Построим явно пример такого числа.
| Определение: |
| Пусть — некоторое перечислимое, но неразрешимое множество натуральных чисел. Занумеруем его элементы. Последовательностью Шпеккера называется последовательность рациональных чисел, -ный член которой определяется как . |
Данная последовательность строго возрастает и ограничена числом , следовательно, по признаку Вейерштрасса, она сходится.
| Теорема: |
Число перечислимо снизу, но невычислимо. |
| Доказательство: |
|
перечислимо снизу, как предел возрастающей вычислимой последовательности рациональных чисел. Допустим теперь, что вычислимо. Пусть . Рассмотрим двоичную запись числа , если ее -ный знак после запятой равен 1, то , иначе — . Мы построили разрешитель для множества . Тем не менее, мы знаем, что — неразрешимое множество, и это невозможно, значит, невычислимо. |
Ссылки
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 14
- Computable number
- Specker sequence