Теорема Банаха об обратном операторе — различия между версиями
(больше понятности) |
|||
| Строка 71: | Строка 71: | ||
Есть в Люстерике, Соболеве. стр.153 (1965г) | Есть в Люстерике, Соболеве. стр.153 (1965г) | ||
Некоторые идеи: | Некоторые идеи: | ||
| − | : Можно заметить, что в ядре только нулевой вектор, в противном случае получим <tex> 0 < m \|x\| \le \|A x\| = 0</tex>. Из этого также следует, что оператор инъективен: пусть <tex>A x_1 = y, A x_2 = y</tex>, тогда <tex>A (x_1 - x_2) = 0</tex>, что возможно только когда <tex>x_1 = x_2</tex>. | + | : Можно заметить, что в ядре только нулевой вектор, в противном случае получим <tex> 0 < m \|x\| \le \|A x\| = 0</tex>. Из этого также следует, что оператор инъективен: пусть <tex>A x_1 = y, A x_2 = y</tex>, тогда <tex>A (x_1 - x_2) = 0</tex>, что возможно только когда <tex>x_1 = x_2</tex>. Если бы у нас была сюръективность, оператор был бы взаимо однозначным, мы бы определили <tex>A^{-1}</tex> на всем <tex>Y</tex> и для любого <tex>y</tex> рассмотрели <tex>x = A^{-1} y</tex>. Тогда <tex> m \|x\| = m \|A^{-1} y \| \le \|A A^{-1} y\| \implies \|A^{-1} y\| \le \frac{1}{m} \|y\|</tex>, то есть оператор ограничен константой <tex>\frac{1}{m}</tex>. Но вроде ничего про нее в формулировке нет |
: Также можно заметить, что это отображение допускает априорную оценку решения, так как <tex>\|x\| \le \frac{1}{m} \|A x\|</tex>, из чего по уже доказанному следует замкнутость образа (неясно только нафига это может понадобиться) --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:16, 9 января 2013 (GST) | : Также можно заметить, что это отображение допускает априорную оценку решения, так как <tex>\|x\| \le \frac{1}{m} \|A x\|</tex>, из чего по уже доказанному следует замкнутость образа (неясно только нафига это может понадобиться) --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:16, 9 января 2013 (GST) | ||
Версия 18:16, 16 января 2013
Содержание
| Определение: |
| Оператор называется непрерывно обратимым, если существует и , причем должен быть определен на всем . |
| Теорема (Банах, о непрерывной обратимости I-C): |
Пусть — B-пространство, оператор и .
Тогда оператор , где — тождественный оператор, непрерывно обратим. |
| Доказательство: |
|
— B-пространство. Рассмотрим следующие суммы: . . — ряд в B-пространстве сходится, если сходится ряд из соответствующих норм. Покажем это: пусть есть операторный ряд . Рассмотрим последовательность частичных сумм , она будет сходиться если сходится в себе (по Банаховости пространства). Тогда , а (так как для конечного числа членов норма суммы меньше суммы норм), но так как последовательность норм сходится, она также сходится в себе и , то есть частичные суммы сходятся в себе, а, значит, и сходятся. Из того, что , получаем . Так как , то существует такой , что . . Поскольку , то , а значит, и . . Устремляя к бесконечности, получаем , а значит — ограниченный оператор. |
Трактовка этой теоремы: , — непрерывно обратимый оператор. При каких условиях на оператор оператор сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда , то есть "при малых возмущениях сохраняется его непрерывная обратимость".
Далее считаем, что пространства и — всегда банаховы.
| Определение: |
| Рассмотрим уравнение при заданном . Если для такого уравнения можно написать , где — константа, то говорят, что это уравнение допускает априорную оценку решений. |
— область значений оператора , является линейным множеством, но может быть незамкнутым. Однако, верно следующее:
| Утверждение: |
Если непрерывен, и уравнение допускает априорную оценку решений, то . |
|
Возьмем сходящуюся последовательсть . Нужно проверить, правда ли , или, что то же самое, что уравнение имеет решение для такого . . Можно выбрать такую подпоследовательность , что для этой подпоследовательности после перенумерации будет выполняться . По линейности : и для любого существует . Поскольку уравнение допускает априорную оценку решений, имеем . Рассмотрим следующий ряд: . Сумма ряда из норм: . По банаховости получаем, что сходится, и . По непрерывности получаем, что . , поэтому . |
| Теорема: |
Пусть — линейный ограниченный оператор, и .
Тогда непрерывно обратим. |
| Доказательство: |
|
TODO: Упражнение, доказать самим. Необходимо заткнуть. Есть в Люстерике, Соболеве. стр.153 (1965г) Некоторые идеи:
|
Теорема Банаха о гомеоморфизме
Перед доказательством теоремы Банаха о гомеоморфизме докажем для начала вспомогательную лемму.
| Утверждение: |
Рассмотрим линейный оператор . Обозначим .
Тогда хотя бы одно всюду плотно в . |
|
Очевидно, что , — B-пространство (а значит, и полное метрическое), значит, по теореме Бэра о категориях, — 2 категории, то есть какое-то множество не является нигде не плотным. Вспомним определение нигде не плотности: нигде не плотно, если . Раз не является нигде не плотным, то , то есть всюду плотно в каком-то открытом шаре. Теперь возьмем замкнутый шар , лежащий в этом открытом шаре, причем такой, что . Рассмотрим кольцо: . Обозначим , тогда кольцо имеет следующий вид: — кольцо с центром в . Заметим, что при параллельном переносе на свойство всюду плотности множества сохраняется. Будем рассматривать . Проверим, что войдет в какое-нибудь : , так как . Поскольку , то . , так как принадлежит кольцу. Подставляем и продолжаем неравенство выше: . Обозначим (это выражение не зависит от ), получаем, что . Итак, получили, что всюду плотно в кольце с центром в . Возьмем теперь любой , его можно представить как . По всюду плотности в кольце, найдется последовательность в такая, что . Но . . Взяв любую точку из , мы можем приблизить ее элементами , а значит, , то есть всюду плотно в . |
На основе доказанной леммы можем доказать теорему:
| Теорема (Банаха, о гомеоморфизме): |
Пусть — линейный ограниченный оператор, причем осуществляющий биекцию, тогда — линейный ограниченный оператор. |
| Доказательство: |
|
Если — биекция, то существует. Осталось показать, что он будет ограничен. Представим как , (заметим, что для леммы не требуется ограниченность оператора). По только что доказанной лемме, существет такое число , что , обозначим этот как . Рассмотрим произвольный . Покажем, что существует такое разложение , что . По всюду плотности, для любого можно подобрать . Дальше можно подобрать , и так далее, получаем, что . Проверим, что для всех их норма удовлетворяет условию разложения: В качестве выберем , и получим необходимое разложение . Итак, теперь . Обозначим . Рассмотрим ряд из : , проверим сходимость ряда из норм: . Вспомним, что . : ряд из мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует . Используем непрерывность : , получили, что . Рассмотрим норму : . Поскольку выбирался произвольный, получаем, что ограничен. |
Теорема о замкнутом графике
| Определение: |
| Графиком линейного оператора называется множество . |
В прямых произведениях множеств сходимость — покоординатная, поэтому можно говорить о замкнутости множеств.
| Теорема (о замкнутом графике): |
Линейный ограничен — замкнут. |
| Доказательство: |
|
Докажем в прямую сторону: пусть есть последовательность пар . Принадлежит ли ? (по единственности предела). Так как , то . Обратное следствие интереснее. Пусть замкнут. Можно показать, что банахово с нормой :
Рассмотрим следующий оператор: . биективно отображает в . ограничен. По теореме Банаха о гомеоморфизме, так как ограничен и биективен, то существует , который также ограничен. Рассмотрим его. (по ограниченности). Получаем, что , откуда ограничен. |
Теорема об открытом отображении
| Определение: |
| — произвольное отображение. Если для любого открытого открыто в , то называют открытым отображением. |
| Теорема (об открытом отображении): |
Пусть — линейный ограниченный оператор. Тогда — открытое отображение. |
| Доказательство: |
|
— линейное подпространство в . Рассмотрим — фактор-подпространство. , где — класс смежности , называется каноническим вложением в фактор-пространство. Оператор — линейный и ограниченный, переводит открытое множество в в открытое множество в , то есть окрытый. TODO: доказать это, упражнение. Вообще интересно, как вводить норму в фактор-пространстве? Вот тут вводят как , выглядит логично, но Додонов все равно вроде об этом не говорил.
TODO: например можно попробовать так: 1) - по свойствам фактор-множества 2) - по свойствам фактор-множства показали линейность. 3)Определим норму, как . Ясно, что она удовлетворяет аксиомам нормы. - показали ограниченность
Покажем, что разные классы переводит в разные точки , так как факторизация происходит по ядру : пусть и , это значит, что , по линейности , так как в ядре. Но тогда получили, что также в ядре, то есть отличается от на элемент ядра, и находятся в одном классе эквивалентности, получили противоречие. Таким образом, оператор биективен, следовательно, — ограничен (по теореме Банаха), значит — открытое отображение TODO: почему? Тут как-то надо, кажется, использовать, что для непрерывного отображения прообраз открытого множества открыт, но пока непонятно, а так как открытое и суперпозиция открытых отображение открыта, тоже открыт. |
Ссылочки: