Рекурсивные функции — различия между версиями
(→Основные определения) |
|||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
− | Все рассматриваемые здесь функции действуют из подмножества <tex> \mathbb {N}^t </tex> в <tex> \mathbb {N} </tex>, где <tex> t </tex> - любое | + | Все рассматриваемые здесь функции действуют из подмножества <tex> \mathbb {N}^t </tex> в <tex> \mathbb {N} </tex>, где <tex> t </tex> - любое натуральное число.Также будем считать что <tex> 0</tex> натуральное число. |
== Примитивно рекурсивные функции == | == Примитивно рекурсивные функции == | ||
=== Основные определения === | === Основные определения === |
Версия 18:34, 18 января 2013
Эта статья находится в разработке!
Все рассматриваемые здесь функции действуют из подмножества
в , где - любое натуральное число.Также будем считать что натуральное число.Содержание
Примитивно рекурсивные функции
Основные определения
Рассмотрим следующие правила преобразования функций.
- Рассмотрим -местную функцию и -местных функций . Тогда после преобразования у нас появится - местная функция .
Это правило называется правилом подстановки
- Рассмотрим -местную функцию и -местную функцию . Тогда после преобразования у нас будет -местная функция , которая определена следующим образом:
- Это правило называется правилом рекурсии.
Определение: |
Примитивно рекурсивными называют функции, которые можно получить с помощью правил подстановки и рекурсии из константной функции | , функции и набора функций где .
Заметим, что если
— -местная примитивно рекурсивная функция, то она определена на всем множестве , так как f получается путем правил преобразования из всюду определенных функций, и правила преобразование не портят всюду определенность.Арифметические операции на примитивно рекурсивных функциях
Сложения
, где
Умножения
, где
Вычитания
Если
, то , иначе .Рассмотрим сначала вычитания единицы
, где
Теперь рассмотрим
, где